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Abstract

Of ine or batch reinforcement learning seeks to
learn a near-optimal policy using history data
without active exploration of the environment.
To counter the insuf cient coverage and sample
scarcity of many of ine datasets, the principle of
pessimism has been recently introduced to miti-
gate high bias of the estimated values. While pes-
simistic variants of model-based algorithms (e.g.,
value iteration with lower con dence bounds)
have been theoretically investigated, their model-
free counterparts — which do not require explicit
model estimation — have not been adequately
studied, especially in terms of sample ef ciency.
To address this inadequacy, we study a pessimistic
variant of Q-learning in the context of nite-
horizon Markov decision processes, and character-
ize its sample complexity under the single-policy
concentrability assumption which does not re-
quire the full coverage of the state-action space.
In addition, a variance-reduced pessimistic Q-
learning algorithm is proposed to achieve near-
optimal sample complexity. Altogether, this work
highlights the ef ciency of model-free algorithms

in of ine RL when used in conjunction with pes-
simism and variance reduction.

an astronomical number of samples are required to train the
learning algorithm to a satisfactory level. Scaling up and
replicating the RL success in many real-world problems face
considerable challenges, due to limited access to large-scale
simulation data. In applications such as online advertising
and clinical trials, real-time data collection could be expen-
sive, time-consuming, or constrained in sample sizes as a
result of experimental limitations.

On the other hand, it is worth noting that tons of samples
might have already been accumulated and stored — albeit
not necessarily with the desired quality — during previous
data acquisition attempts. It is therefore natural to wonder
whether such history data can be leveraged to improve per-
formance in future deployments. In reality, the history data
was often obtained by executing some (possibly unknown)
behavior policy, which is typically not the desired policy.
This gives rise to the problem of of ine RL or batch RL
(Lange et al.2012 Levine et al, 2020,* namely, how to
make the best use of history data to learn an improved or
even optimal policy, without further exploring the environ-
ment. In stark contrast to online RL that relies on active
interaction with the environment, the performance of of ine
RL depends critically not only on the quantity, but also the
quality of history data (e.g., coverage over the space-action
space), given that the agent is no longer collecting new sam-
ples for the purpose of exploring the unknown environment.

Recently, the principle of pessimism (or conservatism) —
namely, being conservative in Q-function estimation when

1. Introduction there are not enough samples — has been put forward as

. . . an effective way to solve of ine RLBuckman et al.202Q
Reinforcement Learning (RL) has achieved remarkable SUGZimar et al 2020. This principle has been implemented in
cess in recent years, including matching or surpassing hlfl- § '

man performance in robotics control and strategy gaBiss ( or instance, a model-based of ine value iteration algorithm,
X which modi es classical value iteratioigar et al, 201
ver et al, 2017 Mnih et al, 2019. Nevertheless, these suc- ¢ K

. . o by subtracting a penalty term in the estimated Q-values and
cess stories often come with nearly prohibitive cost, wherg1 as been shown to achieve appealing sample ef ciedicy (
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(see, e.gAgarwal et al, 202Q Li et al., 2020. It remains
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Throughout this paper, we will be using the term of ine RL
(resp. dataset) or batch RL (resp. dataset) interchangeably.
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Algorithm Type Sample complexity To further improve the sample ef ciency of pessimistic
VI-LCB Hosc? model-free _algorithms, ‘we _introduce_ a varignce—
(Xie et al, 20218 model-based i reduced variant of pessimistic Q-learning. This al-
PEVI-Ady . gorithm is guaranteed to nd ah-optimal policy as
model-based HSC long as the sample siZeis above the order of

(Xie et al, 2021b
Q-LCB

H4SC?  HSsC?

. Hésc?

(this work) model-free L, " m

Q-L_CB-AdV model-free Hisc? up to some log factor. In particular, this sample

(this work) " complexity is minimax-optimal (namely, as low as

lower bound n/a Hisc? HA# up to log factor) for smalllenoug‘h(namely,_

(Xie et al, 2021h "2 " (0;1=H]). The"-range that enjoys near-optimality
is much larger compared to  0; 1=H%° estab-
Table 1.Comparisons between our results and prior art for nding lished inXie et al.(2021) for model-based algorithms.

an"-optimal policy in nite-horizon non-stationary MDPs. The
sample complexities included in the table are valid for suf ciently Both of the proposed algorithms achieve low computa-
small”, with all logarithmic factors omitted. tion cost (i.e.,0(T)) and low memory complexities (i.e.,
O(minf T; SAH g)). Additionally, more complete compar-
- o . isons with prior sample complexities of pessimistic model-
unknown whether the pessimism principle can be iNCorpgy_ <o q algorithmsXe et al, 20211 are provided in Tabl@.

thed_mto n:ﬁdtel-fr(;e algolrlthms . iEOtrler cl(;isls Oft_pOptl_Jlarln comparison with model-based algorithms, model-free
algorthms g pe%r OrtT“S fea;pmgfm ;)_u mRoLe estima Ionalgorithms require drastically different technical tools to
— Inaprovably effective fashion for ot ine kL. handle the complicated statistical dependency between the

. I estimated Q-values at different time steps.
1.1. Main contributions

In this paper, we consider nite-horizon non-stationary 1.2. Related works
Markov decision processes (MDPs) withstates,A ac-
tions, and horizon lengtH . The focal point is to pin down
the sample ef ciency for pessimistic variants of model-free
algorithms, under the mild single-policy concentrability

assumption (cf. Assumptia® 1) of the batch dataset intro- Ofine RL.  One of the key challenges in of ine RL lies

duced |r_1Rash|d|ne_Jad etal2021); Xie etal.(2021h (in in the insuf cient coverage of the batch dataset, due to lack
short, this assumption captures how close the batch dataset is . . . : .

. . . of interaction with the environment.évine et al, 202Q
to an expert dataset, and will be formally introduced in Sec;

tion 2.2). GivenK episodes of history data each of length Ir_elléeer:tixll.;)rzk?(%n EZ 33/?(;?38”:2;8,[\,326"":2293 ?;Oitlzfr];ztize
H (which amounts to a total number ®f= KH samples), : 9 9

our main contributions are summarized as follows the policy to avoid visiting under-covered state and action
' pairs Fujimoto et al, 2019 Dadashi et a).2021); 2) penal-
o . izing the estimated values of the under-covered state-action
We rst study a natural pessimistic variant of the Q- nairs Buckman et a.202Q Kumar et al, 2020. Our work
learning algorithm, which simply modi es the classical tq|iows the latter line (also known as the principle of pes-
Q-learning update rule by subtracting a penalty termgmism), which has garnered signi cant attention recently.
(via certain lower con dence bounds). We prove that |, tact, pessimism has been incorporated into recent develop-
pessimistic Q-learning nds ah-optimal policy as  ment of various of ine RL approaches, such as policy-based
soon as the sample siZeexceeds the order of (Up 10 5phrachesRezaeifar et al2021 Xie et al, 20213 Zanette
log factor) et al, 2021), model-based approachd®ashidinejad et al.
2021, Uehara & Sun202%; Jin et al, 2021 Yu et al, 202Q
Kidambi et al, 202Q Xie et al, 2021k Yin & Wang, 2021
whereC? denotes the single-policy concentrability co- Uehara et a).202% Yan et al, 2022h Yu et al, 2021k
ef cient of the batch dataset. In comparison to theYin et al, 2022, and model-free approachesumar et al,
minimax lower bound HS¢” developed inXie ~ 202Q Yu et al, 20214 Yan et al, 20223.
et al. (20218, the sample complexity of pessimistic
Q-learning is at most a factor ¢42 from optimal  Finite-sample guarantees for pessimistic approaches.
(modulo some log factor). While model-free approaches with pessimistuihar et al,

In this section, we discuss several lines of works which are
related to ours, with an emphasis on value-based algorithms
for tabular settings with nite state and action spaces.

H6SC?
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202Q Yu et al, 20213 have achieved considerable empir-integerN > 0. For any vectox 2 RS” (respx 2 RS) that
ical successes in of ine RL, prior theoretical guaranteesconstitutes certain values for each of the state-action pairs
of pessimistic schemes have been con ned almost exclyresp. state), we shall often usé€s; a) (respx(s)) to denote
sively to model-based approaches. Under the same singlihe entry associated with tl§s; a) pair (resp. state). Sim-
policy concentrability assumption used in prior analyseslarly, we shall denote by = fXhgn247 the set composed
of model-based approachd®gshidinejad et gl2021; Xie of certain vectors for each of the time ste? [H]. We
et al, 2021h Yin et al, 20218, the current paper provides lete represent the-th standard basis vector, with the only
the rst nite-sample guarantees for model-free approacheson-zero element being in theh entry.
with pessimism in the tabular case without explicit model _ . .
construction. In additionYin & Wang (2027 directly em- Let X = (S;AH;T). The notat|onf (X) . 9(X)
ST ; . (respf (X) & g(X)) means that there exists a universal con-
ployed the occupancy distributions of the behavior policy : : . ! )
: 7 . stantCy > Osuchthajf (X)j Cojg(X)j (respjf (X)j
and the optimal policy in bounding the performance of a .. . o .
Cpja(X)j). In addition, we often overload scalar functions
model-based approach, rather than the worst-case upp&p : .
; . . . and expressions to take vector-valued arguments, with the
bound of their ratios as done under the single-policy con- : A .
- . interpretation that they are applied in an entrywise man-
centrability assumption. —
ner. For example, for a vectar = [Xi]1 i n, We have
x2 =[x2]; i n. Forany two vectorg =[xl i » and
Non-asymptotic guarantees for variants of Q-learning. y =[y;]; ; ,, the notatiorx  y (resp.x y) means
Q-learning, which is among the most famous model-free RLx; vy, (respx; y;)foralll i n.
algorithms Watking 1989 Jaakkola et al.1994 Watkins
& Dayan 1992, has been adapted in a multitude of wayspaper organization. The rest of this paper is organized
to deal with different RL Settings. Theoretical analyses foras follows. Sectior? introduces the backgrounds on nite-
Q-learning and its variants have been established in, fofiorizon MDPs and formulates the of ine RL problem. Sec-
example, the online setting via regret analysis @t al,  tion 3 starts by introducing a natural pessimistic variant of
2018 Bai et al, 2019 Zhang et al.2020h Li etal, 2021h  Q-learning along with its sample complexity bound, and fur-
Dong et al, 2019 Zhang et al.2020ac; Jafarnia-Jahromi  ther enhances the sample ef ciency via variance reduction
etal, 202Q Yang et al. 2021, and the simulator setting via jn Sectiond. SectionA presents the proof outline and key
probably approximately correct (PAC) bound@hen etal.  |emmas. Finally, we conclude in SectiBmvith a discussion

202Q Wainwright 2019 Li et al.,, 20213. The variant that  and defer the proof details to the supplementary material.
is most closely related to ours is asynchronous Q-learning,

which aims to nd the optimal Q-function from Markovian .

trajectories following some behavior polick\en-Dar & 2. Background and problem formulation

Mansour 2003 Beck & Srikant 2012 Qu & Wierman  2.1. Tabular nite-horizon MDPs

202Q Li et al., 20216 Yin et al,, 20214ab). Different from

ours, these works typically require full coverage of the stateBasics. This work focuses on an episodic nite-horizon

action space by the behavior policy, a much stronger ad/DP as represented by

sumption than the single-policy concentrability assumed in e AL H . H .

our of ine RL setting. M= SIATH TPnGhzy iTrnhey
whereH is the horizon lengthS is a nite state space of

Variance reductionin RL.  Variance reduction, originally ~cardinalityS, A is a nite action space of cardinalit, and
proposed to accelerate stochastic optimization (e.g., then :S Al  ( S) (respry :S Al [0;1]) represents
SVRG algorithm proposed hjohnson & Zhang2013), the probability transition kernel (resp. reward function) at
has been successfully leveraged to improve the sample eftheh-thtime stef1 ~ h  H). Throughout this paper, we
ciency of various RL algorithms, including but not limited Shall adopt the following convenient notation

to policy evaluationDu et al, 2017 Wai et al, 2019 Xu . - a1 s,

et al, 2019 Khamaru et al.2020, planning Gidford et al, Phsa = Pn(18:2) 2 {011 = (1)
2018ab), Q-learning and its variants\@inwright 2019 which stands for the transition probability vector given the
Zhang et al.2020h Li et al, 2021hc; Yan et al, 20229,  current state-action pas; a) at time stefh. The parame-

and of ine RL (Xie et al, 2021h Yin et al, 20211. tersS, A andH can all be quite large, allowing one to cap-
ture the challenges arising in MDPs with large state/action
1.3. Notation and paper organization space and long horizon.

Let us introduce a set of notation that will be used throughA policy (or action selection rule) of an agent is represented
out. We denote by S) the probability simplex over aset by = f ngf'_,, where , : S ( A) species the
S, and introduce the notatigiN] .= f1; ;Ngforany associated selection probability over the action space at
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time steph (or more precisely, we let, (a] s) represent the
probability of selecting actioa in states at stegh). When

is a deterministic policy, we abuse the notation and |gs)
denote the action selected by policyn states at steph.
In each episode, the agent generates an initial sta?eS
drawn from an initial state distribution2 ( S), and rolls
out a trajectory over the MDP by executing a policyas
follows:

fShianirnOhz = fsi;aiira;iiiisusani g (2)

where at time stef, aj h( j sn) indicates the action

selected in stats,, r,, = rh(Sh; an) denotes the determin-
istic immediate reward, ansh .1 denotes the next state
drawn from the transition probability vect®s, -a, -
Pn( jsh;an). In addition, letd, (s) andd, (s;a) denote
respectively the occupancy distribution induced bgt time
steph 2 [H], namely,

dy(s) = P(sh=sjs1 5 )
d,(s;a) = P(sh =sjs1 ; ) n(ajs) 3)
here and throughout, we dengt¢] = f1; ;Hg. Given

that the initial states; is drawn from , the above de nition
gives

d,(s)= (s) for any policy :

(4)

Value function, Q-function, and optimal policy. The
value functionV,, (s) of policy in states at steph is

de ned as the expected cumulative rewards when this polic

is executed starting from stageat steph, i.e.,

" #
X

Vi (s)=E 1y s;a
t=h

Sh=S ; )

where the expectation is taken over the randomness of t

trajectory(2) induced by the policy as well as the MDP
transitions. Similarly, the Q-functio@,, ( ; ) of a policy
at steph is de ned as

Qn(s;a) = rn(s;a)

#
X

re(se;a) sh=s;ap=a ; (6)
t=h+1

+ E

policies, whose existence is always guarantéadd&rman
2014. The resulting optimal value function® = fV,”g'_,
and optimal Q-function®’ = fQ/ g}, are denoted re-
spectively by

Vh?(s) :
Qi(s;a) =

forany(s;a;h)y 2 S A [H]. Throughout this paper,
we assume that? is adeterministic optimal policywhich
always existsRPuterman2014).

V,, " (s) = max Vi, (s);

Qh? (s;@) =max Q,(s;a)

Additionally, when the initial state is drawn from a given
distribution , the expected value of a given policyand
that of the optimal policy at the initial step are de ned
respectively by

Vi ()

VP():

E Vi(si);
S1

E V7 (s1) : (8)

Bellman equations. The Bellman equations play a fun-
damental role in dynamic programmingegrtsekas2017).
Speci cally, the value function and the Q-function of any
policy satisfy the following Bellman consistency equation:
Vg (89) 9)

Qu(sid) = r(sid+ E

his;a
forall(s;a;h)2S A [H]. Moreover, the optimal value
Junction and the optimal Q-function satisfy the Bellman
optimality equation:

Qi (s;a) = rn(s;a)+ Vi1 (89)

. E (10)

h;s;a

forall(s;a;h)2S A [H].

hze.z. Of ine RL under single-policy concentrability

Of ine RL assumes the availability of a history datafet
containingK episodes each of length. These episodes
are independently generated based on a certain policy
f nofl_; — called thebehavior policyresulting in a dataset

n

K. ok. k ok ok DK
D siyay;ry; sy ayry ;

k=0

where the expectation is again over the randomness inducédere, the initial statess{g_, are independently drawn

by and the MDP except that the state-action pair at stefrom 2 ( S) such thask - vhile the remaining

h is now conditioned to bgs; a). By convention, we shall  states and actions are generated by the MDP induced by
also set the behavior policy . The total number of samples is thus

Vi1 (S)= Qui(s;@=0 forany and(s;a) 2S A : given by

(7
Apolicy “=f ﬁgﬂﬂ is said to be an optimal policy if
it maximizes the value function (resp. Q-functiijnul-
taneouslyfor all states (resp. state-action pairs) among all

T = KH:

With the notatior(8) in place, the goal of of ine RL amounts
to nding an"-optimal policyb = fbng}_; satisfying

V() VvP() T

?
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with as few samples as possible, and ideally, in a computan the Q-estimate as follows
tionally fast and memory-ef cient manner.
Y Y Qn(sn;an) (1 n)Qh(Sh:ah)

Obviously, ef cient of ine RL cannot be accomplished with- 0

out imposing proper assumptions on the behavior policy, * rh(snian) + Vhea (Sner) 5 (12)
which also provide means to gauge the dif culty of the
of ine RL task through the quality of the history dataset.
Following the recent workRashidinejad et a{2021); Xie

et al.(2021h, we assume that the behavior policgatis es
the following property calledingle-policy concentrability

whereQy (resp.Vy) indicates the running estimate Qf
(resp.V)?), and0 < < 1is the learning rate. In com-
parison to model-based algorithms that require estimating
the probability transition kernel based on all the samples,
Q-learning, as a popular kind of model-free algorithms, is
Assumption 2.1(single-policy concentrability) The single-  simpler and enjoys more exibility without explicitly con-
policy concentrability coef cienC? 2 [1;1 ) of a behavior  structing the model of the environment. The wide applicabil-
policy is de ned to be the smallest quantity that satis es ity of Q-learning motivates one to adapt it to accommodate

) of ine RL.
d, (s;a) c? 11 . . . .
(hisa )fZT}H sa d(s;a) ; (11)  Inspired by recent advances in incorporating the pessimism
w hi= principle for of ine RL (Rashidinejad et gl2021; Jin et al,
where we adopt the conventior0 = 0. 20217), we study a pessimistic variant of Q-learning called

LCB-Q, which modi es the Q-learning update rule as fol-
Intuitively, the single-policy concentrability coef cient mea- lows

sures the discrepancy between the optimal polityand S 1 S a 13
the behavior policy in terms of the resulting density ratio Qn(Shian) ( n”)Qh( i @n) (o )
of the respective occupancy distributions. It is noteworthy + n rh(shian) + Vher (Sh+1) by

that a nite C? does not necessarily requireto cover the ) . .
entire state-action space; instead, it can be attainable whé¥ere n is the learning rate depending on the number of

its coverage subsumes that of the optimal polidy This ~ timesn that the state-action paiss; a) has been visited

is in stark contrast to, and in fact much weaker than, otheft gteph, and the penalty terr‘qq > 0 (cf. line 9 of AI-'
assumptions that require either full coverage of the beha@0rithm 1) re ects the uncertainty of the corresponding
ior policy (i.e.,MiN(nsa)2misa Gy (s;a) > O(Lietal, Qiestlmate and_ |mplem(_ants pessimism in the face of uncer-
2021¢ Yin et al, 2021ah)), or uniform concentrability over  tainty. The entire algorithm, which issingle-passalgo-
all possible policiesGhen & Jiang2019. Additionally, ~ rithm that only requires reading the of ine dataset once, is
the single-policy concentrability coef cient is minimized Summarized in Algorithni.

(i.e.,C? = 1) when the behavior policy coincides with

the optimal policy 7, a scenario closely related to imitation 3.2. Theoretical guarantees folL.CB-Q

learning or behavior cloningRajaraman et §12020. The proposed CB-Q algorithm manages to achieve an

o ) _ appealing sample complexity as formalized by the following
3. Pessimistic Q-learning: algorithms and theorem.

theory Theorem 3.1. Consider any 2 (0; 1). Suppose that the be-

. havior policy satis es Assumptiof.1with single-polic
In the current paper, we present two model-free algorithms poficy b gle-policy

: toncentrability coef cienC? 1. Letc, > 0 be some suf-
R aovas, ThleTl 1ge constan, and ke’ log S8 Asatme
' gw Ir respectiv Ical guarar - MhatT > sC? , then the policyb returned by Algorithml
rst algorithm can be viewed as a pessimistic variant of the ___.
; X . : satis es
classical Q-learning algorithm, while the second one further r
leverages the idea of variance reduction to boost the sample H6SC? 3

? b
ef ciency. In this section, we begin by introducingB-Q. Vi) V() G ——F— (14)

with probability at leastl ~ , wherec, > 0is some univer-

3.1.LCB-Q: a natural pessimistic variant of Q-learning sal constant

Before proceeding, we nd it convenient to rst review the . .

. . . ; . As asserted by Theorefl, theLCB-Q algorithm is guar-
classical Q-learning algorithnWatking 1989 Watkins & nteed to nd ZH' o timall olic Witr?hi % robabili? as
Dayan 1992, which can be regarded as a stochastic appro>{31 the total b | F;_ —yKH 9 % Y,
imation scheme to solve the Bellman optimality equation ong as the total sample side= exceeds
(10). Upon receiving a sample transiti¢s,; an; rn; Sh+1 ) HésC?

at time steph, Q-learning updates the corresponding entry © "2 ; (15)
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Algorithm 2 Of ine LCB-Q-Advantage RL

Algorithm 3 Auxiliary functions

1:

7.

8:

9
10:
11:
12:
13:

14.
15:

16:

17:
18:

19:
20:

21:

22:
23:

24
25:
26:
27:
28:
29:
30:
31:
32:
33:

. Initialize:

Parameters: number of epoch®l , universal constant

Cp > 0, target success probability 2 (0;1), and

=|Og SAT :

Qn(s;8); Qn°(s; a); Qp (si8); Ty (s; @),
—(s; @), Nn(s; a) Oforall (s;a;h) 2S A HI;

—yhext

Vh(S);Vh(s);Vh () Oforall(s;h) 2S [H +1];
F(sia); F(sia); (M(sia); §™(si@); n(sia),
Bn(s;a) Oforall(s;a;h)2S A H];

: for Epochm =1 to M do

Lm =2™;// specify the number of episodes in the current
epoch
N, (s;a) =0 forall (h;s;a) 2 [H] S A
epoch-wise counter
/* Inner-loop: update value-estimat& (s;a) and Q-
estimate®n (s; a)
for In-epoch Episodé=1toL, do
Sample a trajectoriys;; an; rhgﬁz1 . Il sampling
for Steph =1 toH do
/I update the overall counter
Nh(sh;ah) Nh(Sh ah)+1 n Nh(sh;ah).
n s n ; Il update the learning rate
/I update the Q-estimate with LCB
Qi°®(sn;an)  update-lch-q()

. Il reset the

// update the Q-estimate with LCB and reference-

advantage
Qn(sh;an)  update-Ich-g-ra() ;
/I update the estimat€gd, andV,
Qn(sn;an)

maxf Q% (sn;an); Qn(Sh;an); Qn(sn;an)g:
Vh(Sh)  maxa Qn(sh;a)
/I update the epoch-wise counter arf** for the
next epoch
Nh(sn;an)  Nn(sn;an)+1;
7Rext(sh : ah) 1

—hext
Vst (Sh+1).

1 —next .
BGpan 0o (onian)*

Wy, (Sh an)
end for
end for
for (s;a;h)2S A [H +1] do
Il setV, and—, for the next epoch
Vh(e) Vi) Th(sia) (sia)
Il restart ;" and seV * for the next epoch
ViT(s)  Va(s) T(sia) 0.
end for
end for
Output: the policyb s.t.b,(s) =
forany(s;h)2S [H].

next

argmax, Qn(s; a)

following update rules fow, and—, are carried out at the
end of them-th epoch:

next

Vi (s) (s); (18a)

1:
2:

11:

12:

13:

: [ n;Bnl(sn;an)

: Qn(snian)

Function update-Icb-q()
QB (sn;an) 1 n)Qr%®(snian) +

32
Vh+1 (Sh+1) H

n (Sh;an)+

Co

: Function update- ch -g-ra()

/* uPdate the moment statistics of the interested terms

jef. adv. advi(g -3y  update-moments()

/* update the bonus difference and accumulative bonus
update-bonus()  ;
n) h(Shn:an) + Gy HT=4

+
n3=4

b b (sh;an) §h(sh;ah)+(l
/I update the Q-estimate based on reference-advantage
(L n)Qn(sn;an) + n rn(sn;an) +

Vhet (Shet ) Vet (Sher )+ h(Sn;an) b

: Function update-moments()

—hext
LVt (Sh+1);

Fi(snian) (1 2) F'(snian)+
/I mean of the reference

F(sh;an) (1 %) [(shian)+ 2 Vo (Shar) ©
/1 2" moment of the reference

MW(sn;an) (1 n) AM(sh;an)* n Vhes (She1)
Vh+1 (Sh+1 ) ;// mean of the advantage

(sh;an) (@ n) 2%(sn;an)+ n Vhe (She1)
Va1 (Sh+1) 2 J/ 2" moment of the advantage
Function update—bonqqs()

14: B[™(sn;an) G = [(sw;an)  Cf(snan) “+
- q
= a0(sp;an) av(syian)
15: l(sh;ah) B (sh;an) Bh(sh;an);
16: Bh(sh;an) B{®™(sn;an):
Em o 1(st = s;al = @)V (St
— (S a) t=f —\>h ’ah h+1 h+l)‘|
hi= - Lm } 1
max 1 1(sh = s;a, = a) ;1
(18b)

forall(h;s;a)2 [H] S A

. Here,V,(s) is assigned by

VﬂeXt(s), which is maintained as the value estimégs) at

the end of th€dm

1)-th epoch, and the update of (s; a)

is implemented in a recursive manner in the currerth
epoch. See also ling8 and line30 of Algorithm 2.

Learning Q-estimate Q

based on the reference-

advantage decomposition. Armed with the references

Vy and—}, updated at the end of the previo(a

1)-

th epoch,LCB-Q-Advantage iteratively updates the Q-
estimateQ,, in all episodes during thea-th epoch. At each
time steph in any episode, whenevés; a) is visited,LCB-
Q-Advantage updates the reference Q-value as follows:

Qn(sia)

n
rn(s;a)

(1 )Qn(s;a)+
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o]
+ Brsa Vher Vier, + l{;} by (s;a) : ciently small", as demonstrated by the following theorem.
es!imate oPh;s;a{Z(Vh a1 Vi i}l ) estimate oPrsa Vi1 Theosrgn 4.1. Consider any 2 (0; 1), and rec;all that =
(19) log =2~ andT = KH . Suppose that, > 0is chosen to
be a suf ciently large constant, and that the behavior policy
Intuitively, we decompose the targef.s.a Vh+1 into a refer- satis es Assumptio.1 Then there exists some universal
ence parPh.s.a Vh+1 and an advantage pahs.a (Vi1 constantcy > 0 such that with probability at least
V41 ), and cope with the two parts separately. In the sequethe policyb output by Algorithn® satis es
let us take a moment to discuss three essential ingredients of
the update rul€19), which shed light on the design rationale
of our algorithm.

" HiSC?S HssC 4
+

V() VR() - -

(20)
Akin to LCB-Q, the term®c. Vhaa Vi

serves as an unbiased stochastic estimate ofg 5 consequence, Theorehl reveals that thé CB-Q-

Phsa Vha Vi o if @ sample transition  aqyantage algorithm is guaranteed to nd ahoptimal

(s;@;sh+1) attime stefh is observed. IVhi1 stays  pjicy (i.e.,V7() VP() ") aslong as the total sample

close to the referencén., as the algorithm proceeds, gj,oT exceeds

the variance of this stochastic term can be lower than

that of the stochastic terf, <., Vi1 in (13). ® H4SC? N HSSsC?
Il2 n

(21)
The auxiliary estimate,, introduced in(18b) serves
as a running estimate of the reference Part.a Vh+1.  For suf ciently small accuracy level (i.e.,"  1=H), this
Based on the update ru(@8h), we design—,(s;a) results in a sample complexity of
to estimate the running mean of the reference part

Phsa Vh+1 Using a number of previous samples. As ®
a result, we expect the variability of this term to be

well-controlled, particularly as the number of samplesherepy matching the minimax lower bound developed in
in each epoch grows exponentially (recall thai = xje et al.(20211 up to logarithmic factor. Compared with

m
2m). the minimax lower bound H$2 in the online RL set-

In each episode, the teriq(s;a) serves as the ad- ting (Domingues et al.202]), this suggests that of ine
ditional con dence bound on the error between the RL can be fairly sample-ef cient when the behavior policy
estimates of the reference/advantage and the grourfdosely mimics the optimal policy in terms of the resulting
truth. More speci cally, {Ff(s; a) and {ff(s; a) are state-action occupancy distribution (a scenario wi@tés
respectively the running mean and 2nd moment of thé?otentially much smaller than the size of the action space).
reference partPn.s.a Ve (cf. lines9-10 of Algo-

rithm 3); ﬁdV(S; a) and ﬁd"(s; a) represent respec- Comparison with of ine model-based approaches. In
tively the running mean and 2nd moment of the adihe same of ine nite-horizon setting, the state-of-art model-
vantage partPhsa (Vhs1  Vhs1) (cf. lines11-12 based approach call®EVI-Adv has been proposed B{ie

of Algorithm 3); By (s; a) aggregates the empirical €t al.(2021B, which a];o leverage thg idea of reference-
standard deviations of the reference and the advantagfdvantage decomposition. In comparison VR&VI-Adv,
parts. The LCB penalty terfm, (s; a) is updated using LCB-Q-Advantage not only enjoys the exibility of model-
Bh(s;a) and n(sh;an) (cf. lines5-6 of Algorithm 3),  free approaches, but also achieves optimal sample complex-

taking into account the con dence bounds for both theity for a broader range of target accuracy levelMore
reference and the advantage. precisely, the' -range for which the algorithm achieves sam-

ple optimality can be compared as follows:

H4sC?

w2 ’

(22)

In a nutshell, the auxiliary sequences of the reference values "

. 1 " . 2:5 .
are designed to help reduce the variance of the stochastic Q- | ?QH } vs: | O{ZH ) (23)
learning updates, which taken together with the principle of (OurLCB-Q-Advantage) (PEVI-Adv)

pessimism play a crucial role in the improvement of sample ) s
complexity for of ine RL. offering an improvement by a factor bf*->.

4.1. Theoretical guarantees fol.CB-Q-Advantage 5. Discussions

Encouragingly, the proposedCB-Q-Advantage algorithm  Focusing on model-free paradigms, this paper has devel-
provably achieves near-optimal sample complexity for suf -oped near-optimal sample complexities for some variants
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Algorithm 4 LCB-Q for of ine RL (a rewrite of Algorithm 1 to specify the dependency &)

1: Parameters: some constart, > 0, target success probability 2 (0;1),and =log SAT .

2: Initialize: Qf(s;a) O;Ni(s;a) Oforall(s;a;h)2S A [H];Vii(s) Oforall(s;h)2S [H+1]; !
st. f(s)=1forall(s;h)2S [H].

3: for Episodek = 1 to K do

4:  Sample thek-th trajectoryf sf; ak; rkgH_; from D . / sampling from batch dataset
5. for Steph=1toH do
6: for (s;a)2S A do
7 /I carry over the estimates and policy
8: NE™(s;a)  NE(s;a); Qf (s;a)  QR(s;a); VK™ (s)  ViK(s); £ () K(s).
9: end for
10: N/ (sKak)  NJ(sK;ak) +1. /7 update the counter
11: n o Nk al); o HEL ./ update the learning rate
12: b Co H; z. /I update the bonus term
13: /I update the Q-estimates with LCBy, 0
14: Rskiak)  QR(skialk)+ n rn(sfial) + Vi (skaa)  QE(skiak) b
15: /I update the value gstimates 0
16: VI (sK)  max VK(sK); maxa QK (sK;a) .
17: /I update the policy
18: If ViK™ (sK) = max o QK™ (sk; @): update £ (sf) = argmax, Q™ (sk; a).
19:  end for
20: end for
A. Analysis

In this section, we outline the main steps needed to establish the main results in TBebeewh Theorend.1 Before
proceeding, let us rst recall the following rescaled learning rates

CH+1
"TH+n

(24)

for then-th visit of a given state-action pair at a given time stegvhich are adopted in bottCB-Q andLCB-Q-Advantage.
For notational convenience, we further introduce two sequences of related quantities de ned for any Mtegeend

n L 8
(Qy s 0N L@ ) N
. NX=0" | > 0O i=n+1 1/ '
3= 1_':1 (=0 ::E _g and N o= S o if N =n; (25)
’ S " 0; if N <n:

The following identity can be easily veri ed:

Sz
1
[EEN

(26)

A.1. Analysis of LCB-Q

To begin with, we intend to derive a recursive formula concerning the update r(ykeﬁ the estimate of the Q-function

at steph at the beginning of thk-th episode. Note that we have omitted the dependency of all quantities on the episode
indexk in Algorithm 1. For notational convenience and clearness, we rewrite AlgoritlasiAlgorithm4 by specifying the
dependency on the episode indeand shall often use the following set of short-hand notation when it is clear from context.

NKX(s; a), or the shorthandll X: the number of episodes that has visi(ega) at steph before the beginning of thie-th
episode.
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ki (s; @), or the shorthan#": the index of the episode in which the state-action psiig) is visited at stefh for the
n-th times. We also adopt the convention tk&t= 0.

Pk 2f0;1g' S: arow vector corresponding to the empirical transition at tepthek-th episode, namely,

PX(s)= 1 s= sk, foralls2S: (27)

K=1f kgH_, with K(s)=argmax, QK(s;a);8(h;s) 2 [H] S : the deterministic greedy policy at the beginning
of thek-th episode.

b: the nal outputb of Algorithms 1 corresponds toK *! de ned above; for notational simplicity, we shall trdaas
K" in our analysis, which does not affect our result at all.

Consider any state-action pd#; a). According to the update rule in lin4 of Algorithm 4, we can express (with the
assistance of the above notation)

n [0}
N K NIS N K N K
Qi(sia)= QF " (sa)= 1 nx Q" (ss@)+ wp ra(sia)+ Vi s by (28)

where the rst identity holds sinckN denotes the latest episode prioktdhat visits(s; a) at steph, and the learning
rate is de ned in(24). Note that it always holds that> k NG Applying the above relatio(28) recursively and using the

notation @5) lead to

N

k k n n
Qk(sia)= ¢ "Qi(s;a+ A" ra(sia+ VK sy b (29)
n=1

As another important fact, the value estiméeis monotonically non-decreasingkqi.e.,
Vit (s)  ViK(s)  forall(s;k;h)2S  [K] [H]; (30)

which is an immediate consequence of the update rule irLref Algorithm 4. Crucially, we observe that the iterag
forms a “pessimistic view” o¥}, * —andin turnv,? — resulting from suitable design of the penalty term. This observation
is formally stated in the following lemma, with the proof postponed to Se@idn

Lemma A.1. Consider any 2 (0;1), and suppose thay, > 0is some suf ciently large constant. Then with probability at
leastl

N |sés;a) ) N ,%s;a) )
r';lh (s;a) Ph;s;a Phk (s;a) th+1(5ya) r’?‘h (s;a) bn (31)
n=1 n=1
holds simultaneously for a(k; h;s;a) 2 [K] [H] S A ,and
k
Vi) Vh (8) W (9) (32)

holds simultaneously for alk; h;s) 2 [K] [H] S .

In a nutshell, the resu(B2) in LemmaA.1 reveals tha¥,¥ is a pointwise lower bound ov, ‘ andV,?, thereby forming

a pessimistic estimate of the optimal value function. In addition, the prof#ilyn LemmaA.1 essentially tells us that

the weighted sum of the penalty terms dominates the weighted sum of the uncertainty terms, which plays a crucial role
in ensuring the aforementioned pessimism property. As we shall see momentarily, Lemhfioams the basis of the
subsequent proof.

We are now ready to embark on the analysislféB-Q, which is divided into multiple steps as follows.
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Step 1: decomposing estimation errors. With the aid of LemmaA.1, we can develop an upper bound on the performance

difference of interest in0) as follows
1

Vi) VP(O)= E Vi) E Vi (s)

0 , .
E Vi(s1) _E Vi (s1)
S1 S1

i 1 X , .
K E Vi(s1) E Vi(s1)
_ S1 S1
k=1
1 X X ? ? k .
K dy (s) Vi'(s) Vi'(s) ; (33)
k=1 s2S

where (i) results from Lemma.1 (i.e.,V, ‘ (s) Vf (s)foralls2S), (i) follows from the monotonicity property in
(30), and the last equality holds sindg (s) = (S) (cf. (4)).

We then attempt to bpund the quantity on the right-hand sid@3)f Given that ? is assumed to be a deterministic policy,
we haved, (s) = d,, (s; ’(s)). Taking this together with the relatioM¥(s) maxa QK(s;a)  QK(s; £(s)) (see
line 16 of Algorithm 4) andV,?(s) = Q}(s; {(s)), we obtain

X X, . ) XX, ) )
dy () VW(s) Wn(s) = dy (S5 h(S) Vi (s) Vh(s)
k=1 s2S k=1 s2S
X( X ? 2 2 2 Kk 2
dy (s; n(s) Qn s; n(s)  Qpn s; r(s)
k=1 s2S
X X , 7
= dy (s;8) Qi(s;a) Qf(s;a) (34)
k=1 (s;a)2S A

for anyh 2 [H], where the last identity holds sincé is deterministic and hence

d, (s;a)=0  foranya6 7(s): (35)

In view of (34), we need to properly contr@/ (s;a)  QK(s;a). By virtue of (26), we can rewriteQ; (s; a) as follows

N N

X
A= MAsa= Vsar NQisa)
n=0 n=1
N
k k
= E“Qﬁ(s:aﬂ r';lh rn(s;a)+ Ph:s;th?+1 ; (36)
n=1

where the second line follows from Bellman's optimality equatid@) ( Combining €9) and 36) leads to

Qi(s;a)  Qf(s;a)

)
_ Nf N7/l 1/c. N 2 K" k"
= 5" Qp(s;a) Qp(sia) + n" PhsaVii  Vher (Sher) + b
n=1
N N ﬁ
NE 2 N N 2 n N n n
= o" Qn(s;d) er1 (s;a) + n"by+ n"Phsa Vhi th+1 + n" Phsa Prh( Ve (37)
n=1 n=1 n=1
k k
N K X NK X N K 2 n
0 h H + 2 n h bﬂ + n h Ph;s;a Vh+l Vh+l , (38)

n=1 n=1
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where we have made use of the de nition(&¥) by recognizing?" Vi<, = VX, (sK’, ) in (37), and the last inequality
follows from the factQﬁ(s; a) Qi(s;a) = Qﬁ(s; a) 0 H andthe bound31l) in LemmaA.l. Substituting the above
bound into 84), we arrive at

N4s:a)
X X 2 2 k X X ? ey Nf(sia) X X ? e X N (s:a)
dy () Vh(s) Vi(s) dy (559 o H+2 dy (s;d) n (o
k=1 s2S i(=1 (s;a)2S A k=1 (s;a)2S A n=1
{z }
=:lp
X X , Njsa) -
+ dy (S;@)Phsia r':lh(sya) Vh?+1 thi‘l(s'a) : (39)
k=1 (s;a)2S A n=1

Step 2: establishing a crucial recursion. As it turns out, the last term on the right-hand sid€38) can be used to derive
a recursive relation that connects stewith steph + 1, as summarized in the next lemma.

Lemma A.2. With probability at leastL  , the following recursion holds:

X X , Nijsa) -
dy’ (S;@)Phs;a AV AP VA
k=1 (s;a)2S A n=1
r
1 XX 2H 2H
1+ dhig (S) Vihy (S) VK (s) +24 H2C?K log— +12HC?log —: (40)
k=1 s2S

LemmaA.2 taken together with39) implies that

X X ) 5 " 1 X X ” R .
dh (S) Vh- (S) Vh (S) 1+ ﬁ dh+1 (S) Vh.+l (S) Vh+1 (S)
k=1 s2S k:rl s2S
2H 2H
+1p+24 H2C?K log— +12HC?log —: (41)
Invoking (41) recursively over the time steps= H;H 1, ;1 with the terminal conditiovX,, = V,7,;, =0, we
reach
X X o, ) XX »
di () V() Vi'(s)  max dh (5) W'(s) Wa'(9)
k=1 s2S [ ]k=1 s2S ; I
X! 1 2H 2H
1+ﬁ lh +24 H2C?K log— +12HC?log — ; (42)
h=1

which captures the estimation error resulting from the use of pessimism principle.

Step 3: controlling the right-hand side of (42). The right-hand side of42) can be bounded through the following
lemma, which will be proved in Appendiz.3.

Lemma A.3. Consider any 2 (0;1). With probability at least ~ , we have

r— !
X h 1 o
1+ 1 In +24 H2C?K IogZ—H+12HC7Iogzi| . H2SC? + H5SC?K 3: (43)

where we recall that := log SAT

Combining LemmaA.3 with (42) and @3) yields
1 X X

V() VPO o d(9) VS V()
k=1 s2S
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2 X % dy (s) V() Vi(s)
K hz[H]k:l s2S
G HSSC77 i H?SC? _ ¢ HOSC7? 6 HSC’
2r K 2 K 2 T 2 T
6 ? 3
. ()

for some suf ciently large constamt, > 0, where the last inequality is valid as longTas> SC? . This concludes the proof
of Theorem3.1

A.2. Analysis of LCB-Q-Advantage

We now turn to the analysis &fCB-Q-Advantage. Thus far, we have omitted the dependency of all quantities on the epoch
numberm and the in-epoch episode numlbén Algorithms2 and3. While it allows for a more concise description of our
algorithm, it might hamper the clarity of our proofs. In the following, we introduce the not&tiordenote the current
episode as follows:

k = Li + t; (45)

which corresponds to theth in-epoch episode in tha-th epoch; herd,.,, = 2™ stands for the total number of in-epoch
episodes in then-th epoch. With this notation in place, we can rewrite AlgoritBms Algorithm5 in order to make clear
the dependency on the episode in#expoch numbem, and in-epoch episode indéx

Before embarking on our main proof, we make two crucial observations which play important roles in our subsequent
analysis. First, similar to the propert$0) for LCB-Q, the update rule (cf. linek3-20 of Algorithm 5) ensures the monotonic
non-decreasing property ¥f, (s) such that for alk 2 [K],

Vi (s)  VK(s);  forall(k;s;h)2 [K] S [H]: (46)

Secondly,Vhk forms a “pessimistic view” o1Vh?, which is formalized in the lemma below; the proof is deferred to
AppendixD.1.

LemmaA.4. Let 2 (0;1). Suppose that, > 0is some suf ciently large constant. Then with probability at lehst
the value estimates produced by AlgoritBreatisfy

VE(S) Wi () V(s) 47)
forall (k;h;s) 2 [K] [H+1] S .

With these two observations in place, we can proceed to present the analysiBf@-Advantage. To begin with, the
performance difference of interest can be controlled similaB8 &s follows:

V() W)= E V) E Vi ()

0]

E Vi(s1)) E Vf(s1)
S1 S1

@ 1 X , .
K E Vi(s1) E Vi(s1)
S1 S1
k=1
_1 X X ? ? k .
=< d, (s) Vi'(s) Vi(s) ; (48)
k=1 s2S

where (i) follows from Lemmah.4 (i.e.,V; ‘ (s) VL (s)foralls 2 S), (i) holds due to the monotonicity i(#6) and the
last equality holds sincé; (s) = (s) (cf. (4)). It then boils down to controlling the right-hand side(d8). Towards this
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Algorithm 5 LCB-Q-Advantage (a rewrite of Algorithm2 that speci es dependency dnor (m;t).)

1: Parameters: number of epoch#1 , universal constant, > 0, target success probability 2 (0;1), and
= log SAT
2 Initialize QL(s;a); QL (s;a); Qs (s;a); ~L(s;@); ™% (s;a);Ni(s;a)  Oforall(s;a;h)2S A [H];
V() Vi (s): Vit (s)  Oforall(s;h) 2S  [H +1];
©il(sia); *fl(s;a); Mi(s;a), Mi(s;a), n(s;a);Br(s;a) Oforall(s;ah)2S A [H]

: for Epochm =1 toM do
:  Lm =2™;/l specify the number of episodes in the current epoch

3
4
5: l@ém; l)(s; a)=0 forall (h;s;a) 2 [H] S A :/lresetthe epoch-wise counter
6: /*Inner-loop: update value-estimatés(s; a) and Q-estimate®n (s; a)

7. for In- epoq{; Eplsode ltoLy do

8

9

Setk YL+t setthe eplsode index
: Sample thek th trajectoryf sf; akghl_; . // sampling from batch dataset
10: Compute ¥ s.t. £(s) = argmax, Qﬁ(s; a)forall(s;h) 2S  [H]. // update the policy
11: for Steph =1 toH do
12: for(s;a)2S A do
13: / carry over the estimates
14: NS (s;a)  NK(s;a); K (s; a) N (s;a); VK (s)  ViK(s);
15: s O (sia) Q) (sia) Qysia Qft(sia)  Qf(sia)
16: Vit Ve VI VR (e s
17: end for
18: NS sk ak)  NESS;ak)+1;n NK (s ak). /7 update the overall counter
19: n  feL;// update the learning rate
20: /I update the Q-estimate with LCB
21 QB * (sk:ak)  update-lcb-q()  ;
22: /I update the Q-estimate with LCB and reference-advantage
k+1
23: (sk;ak)  update-lch-g-ra() ;
24: // update the Q-estimate, and value estimate,
25 QEH(shia)  maxt QTP (skra);Qn " (s al): Qf(ski e
26: th+1 (sk)  maxa QF™ (sK; a).
27: /I update epoch-wise counter anif*(s; a) for the next epoch
28: (™ D (skoaky MM (skaky + 1
20: TR (s ) 1 m K (sn;an) + mvﬂﬁk(smﬂ
30: end for
31: end for

32:  /*Update the referencé/(,, Vi ) and (,, 1)
33; for(s;a;h)2S A [H +1] do

—k 1 K+1 . _
34: ) Vi) —K+l(g;a) Nk (s;8). //setVy, and—, for the next epoch
35: VEeXt (s) Vi*L (s); 1otk (g;8) 0./ set 1 andV ™ for the next epoch
36: end for
37: end for

. K : P M
38: Output: the policyb = with K = o Lm.

m

end, it turns out that one can control a more general counterpart, i.e.,

X )
dy (8) V(S)  Vi'(s) (49)
k=1 s2S
foranyh 2 [H]. This is accomplished via the following lemma, whose proof is postponed to AppBrzlix

LemmaA.5. Let 2 (0;1), and recall that :=log SAT . Suppose thats; ¢, > 0 are some suf ciently large constants.
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Then with probability at least  , one has

X X

dy'(s) VP(S) W(S)  IE+ 3Z+ 3% (50)
k=1 s2S
where
X X " - ) #
? . H’~= H
Iy o= dy (s;a) ON'E{(S'a)H + 4% =t Nk40b_ 1
k=1 s;a2S A NK(s;a) _1 h(s:d) _
X X ) —x
J2 =2 d, (s;a)B,(s;a);
k=1 s;a2S A
r
3. 1 X X ? ? k ? 2H 3 ’)p*2
Jp = 1+ﬁ Ohs1 (S) Vi1 () Wi (s) +48 HC?K log— +28c,H*C® S “: (51)
k=1 s2S

As a direct consequence of LemrAgb, one arrives at a recursive relationship between time $tepslh + 1 as follows:

X X

dy (8) V() Vi'(s)
k=1 s2S
r
1 XX ? ? k 2 2H 3~2P T2 1 2.
k=1 s2S
Recursing over time stefps= H;H 1, ;1 with the terminal conditiorv,¥,; = V7., =0, we can upper bound the

performance difference at= 1 as follows

XX o, XX o,
d'(9 V(9 VIO  max T d'(9 WIS V()
k=1 s2S [ ]k=1 s2S r I
X 1 ot ? 2H 3 '7p72 1 2 .
1+ 48 HC?K log = +28c,H3C? S2+J1+J2 : (53)

h=1

To nish up, it suf ces to upper bound each term (&3) separately. We summarize their respective upper bounds as follows;
the proof is provided in Appendi®.3.

LemmaA.6. Fix 2 (0;1), and recall that :=log SAT . With probability at leas.  , we have

i h 1

1 .

1+ I, HET(SCT)IKE 2+ H3sC? %, (54a)
h=1

Y

X 1 "t f xXox P ,

1+ JZ. U H4sSC? 3 max d,"(s) V7(s) ViK(s) + HB3SC?’K 5+ H?SC? % (54b)
h=1 h2[H k=1 s2S

LN 2H p T 2H p

1+ 5 48 HC?K log=— +28c,H3C? S? . HS3C?’K log=— + H*C? S 2 (54c)

h=1

Substituting the above upper bounds id8)(and 63) and recalling thal = HK , we arrive at

V() V() imaxx( X d, (s) Vi2(s)  ViK(s)
1 1 K hz[H]k:l s h h h
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) oy < ) 1
1 @' Hasc? 3 max d.’(s) V2(s) VK(s) + HB3SC?K 5+ H4SC? 4+ H275(SC?)iK 7 2 A
K h2 [H h h h
k=1 s2S
oy 1

0 1 oH XX, Pt )
?@ H4SC? 3hrrz1ax d, () V2(s) Vik(s) + HB3SC?’K 5+ H4SC? “A
k=1 s2S

(if) N
: Ki P H3SC7K 5+ H4sC? 4
" HiSC75 | HssCr 4
+ :
T T

where (i) has made use of the AM-GM inequality:

2 2 P
2H275(SC?)3K s  HOY3(SC?iK# + H%SC): = P H3sCK + H4sC?;

P P »
nd (i) holds by lettingx = maxpzy - s) V\'(s) V,(s) and solving the inequality
pnd (i) holds by lety M1 ke ss G (9 V(9 VK(s) and solving the inequali

H4SC? 3x + H3SC?K 5+ H*SC? 4. This concludes the proof.

B. Technical lemmas
B.1. Preliminary facts

Our results rely heavily on proper choices of the learning rates. In what follows, we make note of several useful properties
concerning the learning rates, which have been establishdahiet(al, 2018 Li et al., 20218.

Lemma B.1(Lemma 1 in (ietal., 20218). For any integelN > O, the following properties hold:

1 XN 1
e . n—”a NE for all 5 a 1 (55a)
2H X 2H X 1
N . N2 . N L.
Jmax n:l( ) N T 1+ (55b)

In addition, we gather a few elementary properties about the Binomial distribution, which will be useful throughout the
proof. The lemma below is adapted frofie et al.(2021h Lemma A.1).

Lemma B.2. Suppos&  Binomialn;p), wheren 1andp?2 [0;1]. Forany 2 (0;1), we have

p  8log t
N 1 e (56)
and
_ "W tnp 8log (57a)
. l .
e’np ifnp log % ; (57b)

2¢log ¥ ifnp 2log ! :

with probability at leastl. 4 .

Proof. To begin with, we directly invok&ie et al.(2021h Lemma A.1) which yields the results {66) and(573. Regarding
(57b), invoking the Chernoff boundvershynin 2018 Theorem 2.3.1) witlE[N] = np, whennp log 1 , it satis es
enp e’np

np
PIN €np) e Znp
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Similarly, whennp  2log % , we have

1 0] enp 2ot loa(®)
P N 2¢log = e —
g 2e2log 2
- 2e2 |og( L
(i) e M enp “° °9(™) e 2¢°log()
enp

where (i) results fronvershynin(2018 Theorem 2.3.1), and (ii) follows from the basic faélog 2log 1 np.
Taking the union bound thus completes the proof. O

B.2. Freedman's inequality and its consequences

Both the samples collected within each episode and the algorithms analyzed herein exhibit certain Markovian structure. As
a result, concentration inequalities tailored to martingales become particularly effective for our analysis. In this subsection,
we collect a few useful concentration results that will be applied multiple times in the current paper. These results might be
of independent interest.

To begin with, the following theorem provides a user-friendly version of Freedman's inequaktydmanl975; seeli
et al.(2021a Section C) for more details.

Theorem B.3(Freedman‘sinequalityﬂ,Considera ltrationFg F 1 F > , and letEy stand for the expectation
conditioned orFy. Suppose that, = ’,2:1 Xk 2 R, wheref X g is a real-valued scalar sequence obeying
iXki R and Ex 1 Xk =0 forallk 1

for some quantitR < 1 . We also de ne
X0
W, =  Ex 1 X?2:
k=1
In addition, suppose thaw/, 2 holds deterministically for some given quantity< 1 . Then for any positive integer
m 1, with probability at leastl one has

;
n 20
jYnj 8 max Wn;zfm IOQZ—m+ gRlogz—m: (58)

We shall also record some immediate consequence of Freedman's inequality tailored to our problem. RdGHIstkant
denotes the number of times that a) has been visited at stdpbefore the beginning of thieth episode, ané" (s; a)
stands for the index of the episode in whigha) is visited for then-th time. The following concentration bound has been
established irvi et al. (2021h Lemma 7).

LemmaB.4.Let W\ 2RSj1 i K;1 h H+1 and ui(s;a;N)2Rjl1 i K1 h H+1 bea
collections of vectors and scalars, respectively, and suppose that they obey the following properties:

W, is fully determined by the samples collected up to the end ghthel)-th step of thé-th episode;
KW/k;  Cu;

ul (s; a; N) is fully determined by the samples collected up to the end dtthel)-th step of the-th episode, and a
given positive integeN 2 [K];

0 ul(s;a;N) Cy;
P k . n .
0 = R KRR (g aN) 2,
In addition, consider the following sequence

Xi(s;a;h;N) = uh(s;a;N) P} Pnsa Wiy 1 (Sh;ah)=(s;a) ; 1 i K (59)
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with P! de ned in(27). Consider any 2 (0; 1). Then with probability at least

Xi(s;a;h;N)
i=1
M !
L saT K "G ,SAT
Cylog? 22— ufh ) (s:a;N)Vamsa W+ c,Cp + Cu log® == (60)
n=1

holds simultaneously for alk; h;s;a;N) 2 [K] [H] S A [K].
Next, we make note of an immediate consequence of LeBuhas follows.
LemmaB.5.Let WL 2RSj1 i K;1 h H+1 beacollection of vectors satisfying the following properties:

W, is fully determined by the samples collected up to the end ghthel)-th step of thé-th episode;
kW/ki  Cy.

For any positiveN  H, we consider the following sequence

Xi(s;a;h;N) = “A Pl Phsa Wi, 1 (sh;a)=(s;a) ; 1 i K (61)

(sia)

with Pg de ned in(27). Consider any 2 (0; 1). With probability at leas.
r

H SAT
Xi(s;a;h;N) . chzv log? =—— (62)
i=1
holds simultaneously for alk; h;s;a;N) 2 [K] [H] S A [K].
Proof. Takingu},(s;a;N) = “i (s:a)» ONE can see fron®Bb) in LemmaB.1 that
i (s
i 2H
ui(s;a;N) W::Cu:
Recognizing the trivial bounWar,sa W, "{**  C2, we can invoke LemmB.4 to obtain that, with probability at least
1,
r U r !
X SAT P MK Cy SAT
Xi(s;a;h;N) . Cylog? SATY NC2+ C,Cy+ WUCW log? =——
i=1 r n=1 r
H SAT HC SAT HC2 SAT
N log? =—— C, + N ¥ log? . N W Jog?

holds simultaneously for a(k; h;s;a;N) 2 [K] [H] S A [K], where the last line applig55b) in LemmaB.1
once again. O

Finally, we introduce another lemma by invoking Freedman's inequality in The8t8m

LemmaB.6. Let W/X(s;a) 2 RSj(s;@2S A ;1 k K1 h H+1 beacollection of vectors satisfying
the following properties:

W[ (s; a) is fully determined by the given state-action pésra) and the samples collected up to the end of the
(k  1)-th episode;

kKW((s;a)ky  Cuw.
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For any positiveCq 0, we consider the following sequences

2 3
: 49’ (sh; ) K ok ok X ? k 5
Xnk = Cq mph;sh;aﬁwhﬂ (sn;an) dn” (S; @Phisia Whia (S; )2 1 k K (63
h *“h (s;a)2S A
2 3
. 4 9%’ (S5 88) ik (k. ak X » k 5
Xk = Cd mph Wh,1 (sh:ag) dy’ (s;@)Phis;a Wiy (S78)2 5 1 k K (64)
h ' “h (s;a)2S A

Consider any 2 (0; 1). Then with probability at least

U
X X 2H 2H
X hik t 8cac? d,’(S;@) Phsa WK, (s;d) %log == +2C4C?Cy log =— (65)
k=1 k=1 (s;a)2S A
¥ X
x X 2H 2H
X hk F SC§C? d,’ (s;@)Phs;a W#ﬂ (s;@) 2 log=— +2C4C’C,, log =— (66)
k=1 k=1 (s;a)2S A

hold simultaneously for ath 2 [H].

P
Proof. We intend to apply Freedman's inequality (cf. TheorBr8) to control ,le Xhk - Considering any given time
steph, it is easily veri ed that

Ex 1[Xnk]=0; Ex 1[Xhk]=0;

whereEy 1 denotes the expectation conditioned on everything happening up to the end(kbf thB-th episode. To
continue, we observe that

dy” (sf; af)
d, (sk; ak)
dy” (sf; af)
d, (sk; ak)

iXnkj Cd +1 Wi, (s;a) ,  2C4C7Cu; (67)

iXnki Ca +1  Wg,(s;a) ,  2C4C7Cu; (68)

where we use the assumptiodgs?,% C?forall(h;s;a) 2 [H] S A (cf. Assumptior2.1) and W, (sf;af) ,
s

Cw.

Recallthat( S A ) isthe probability simplex over the st A of all state-action pairs, and we denotechy?2 ( S A )
the state-action visitation distribution induced by the behavior polieytime stegh 2 [H]. With this in hand, we obtain

2 3,

; 2 X 2 4dh?(sﬁ;aﬁ) K (k. ak X 2 k
Ex 1 Xnxi”] CaBi 1453y Phistal Wi (Sh3a0) dy’ (S; @Phsa WK, (s;@)°
k=1 k=1 n(Snian) (s;a)2s A
)(( d ?(Sk.ak) 2
C2E sk o D T I e WK (K ak)
o1 d=(sf;ar) dy dh (Sﬁ;aﬁ) his§sag h+1 \®h1 Gh
x X d.’(s;a 2
= G isa ((S.'a)) dy’(5:8) Phsa Wiy (5:8)
k=1 (s:2)2S A h =
ox . X , " 2
CgC dy’(s;@) Phsa Whyq (S;9) (69)
k=1 (s;a)2S A
X 2 X 24 2 k k. ky 2 2~?A~2
C3 Cidy’(s;a) Why(spian) , CGCCIK; (70)

k=1 (s;a)2S A
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where (i) follows fromd(;h?((;:)) C? (see Assumptio.1) and the assumptionW,; (s;af) ,  Cuw.

Similarly, we can derive

2 32
x - X, 4dh?(sﬁ;aﬁ) K\wk (k- oK X ? K 5
Bk 10X nk]] CiEk 1 th W1 (Sh;an) dy’ (S; @)Ph;sia Whyy (S;d)
k=1 k=1 h(Sh:ah) (s:a)2S A
" #
X e o En A" (5030 pryyic (o ak)
k=1 A7) o TP Prskak d (sk;ak) MM
X X d’(s;a) 2
= C? mdh?(s;a)Ephk Prea  PRWE (s:4)
k=1 (s:2)2S A h A=
0 X 2R7? X 2 kyask 2
CdC' dh. (S, a) Ep}f Phsa Ph Wh+1 (S, a) (71)
k=1 (s;a)2S A
X 207 X ? k 2
= CgC dy’ (s;@)Phsa Whyy (S:9) (72)
k=1 (s;a)2S A
X 2 X ? k 2 2~2~2
Cq Cidy’(s;a) Why(sia) | CGC'CLK; (73)

k=1 (s;a)2S A

where (i) follows fromdg?((ss.;a)) C? (see Assumptio.1) and the assumptionWy,; (sf;ak) ;| Cu.
NG

P P —
Plugging in the results i{67) and(69) (resps.(68) and(72)) to control Ezl iXhk ] (resps. kK:1 Xk ), we invoke
TheoremB.3with m = dog, K eand take the union bound ovier2 [H] to show that with probability at leadt

NP
I

\

u
X 4 X X 2C7C2K

t smax. = czc? d,?(s;8) Prsa WK, (s;a) 2;%. IOGIE

k=1 k=1 (s;a)2S A

+ gcdc?cw log H

v
U
X X 2H 2H
t 8C4C? d,(5:8) Phsa W, (s;8) “log == +6C4C’Cy log =~
k=1 (s;a)2S A
and
¥ 8 9
X ¥ <X X C2C?CZK = 2H
X hik t 8max, cic’? dy’(s;@)Phsa WK, (s:a) ? ; dzimw log —
k=1 © k=1 (s:2)2S A '

2H
+ gcdc?cw log —

X 2H 2H
8C4C” dy’ (S;@)Phsa W, (5i8) “log =~ +6C4C?Cy log =

k=1 (s;a)2S A

<

holds simultaneously for ali 2 [H]. O
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C. Proof of main lemmas forLCB-Q (Theorem 3.1)
C.1. Proof of LemmaA.1
C.1.1. RROOF OF INEQUALITY (31

P k . k . n . n .
To begin with, we shall control N2, n(s2) p . pki(s8) \KI(52) by invoking LemmaB.5. Let

Wist = Viar s
which satis es
KW, ki H=:Cy:
Applying LemmaB.5with N = NKX(s; a) reveals that, with probability at leat

S

Xk

K (a- n(a. n(a.

nT R P PO VCE = T X siahiNK(sia) o
n=1 i=1

Né{s;a) H3 2
— 74a
NK(s; a) (742)

holds simultaneously for afks; a;k;h) 2S A [K] [H], provided that the constans > 0Ois large enough and that
NK(s;a) > 0. 1f NX(s;a) = 0, then we have the trivial bound

NMS;a) NK(s:a) k" (s;a) k" (s;a)
n Phsa P, 777 Vg 0 =0: (74b)
n=1
Additionally, from the de nitionb, = ¢, >, we observe that
8 h i
P ke K (e q q
< N (s;a) N (sia) H3 2 . H3 2 . . K/
b ) n" bh2 o W,Zcb NK(sa) ° if Nj(s;a) > 0 75)
D TNp(sa) Ni(sa)y . if NK(s:a) = 0
n=1 n ’ h ’

holds simultaneously for afl;a;h;k2S A [H] [K], which follows directly from the propert{65g in LemmaB.1.
Combining the above boundg4) and (75), we arrive at the advertised result

NMs;a) N,gés;a)

K (- n (e n(a- K (-
r’;‘h (sia) Phsa P# (s;a) th+1(sya) rl:‘h (sia) [
n=1 n=1

C.1.2. RROOF OF INEQUALITY (32
Note that the second inequality &2) holds straightforwardly as
Vi (8)  V7(s)
holds for any policy . As a consequence, it suf ces to establish the rst inequality3®)(namely,

Vi (s) th(s) forall(s;h;k) 2S [H] [K]: (76)

Before proceeding, let us introduce the following auxiliary index

n [0}
ko(h;k;s) :=max |:1<k andV{(s)= max Ql (s; a) (77)

forany(h;k;s) 2 [H] [K] S ,which denotes the index of the latest episode — before the end ¢ thel)-th episode
— inwhichV;, (s) has been updated. In what follows, we shall often abbrekigte; k; s) ask,(h) whenever it is clear from
the context.
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Towards establishing the relati¢6), we proceed by means of an inductive argument. In what follows, we shall rst justify
the desired inequality for the base case whenl = H + 1 for all episodesk 2 [K ], and then use induction to complete
the argument for other cases. More speci cally, consider anylst2gH | in any episodé 2 [K ], and suppose that the rst
inequality of @2) is satis ed for all previous episodes as well as all staps h + 1 in the current episode, namely,

V() Voo (s) forall(K%h%s)2 [k 1] [H+1] S : (78a)
tho(S) Vhok(s) foralh® h+1 ands2S: (78b)

We intend to justify that the following is valid

Vik(s) V, (s) foralls2S; (79)

assuming that the induction hypothesig§)(holds.

Step 1: base case. Let us begin with the base case whem 1 = H + 1 for all episodek 2 [K]. Recognizing the fact
thatVy,,, = VX,; =0 forany and anyk 2 [K], we directly arrive at

V,Ll (s) Wy k+l (s) forall (k;s) 2 [K] S : (80)

Step 2: induction. To justify (79) under the induction hypothesig8), we decompose the difference term to obtain

Vo (8) Vi(9)= Vi () max maxQf(sia): V¥ X(9)

Qn s; K(s)  max max Ql(s;a); VieM(s) ; (81)
where the last line holds sind4 (s) has not been updated during episollglh); ko(h) +1; ;k 1 (in view of the

de nition of ko(h) in (77)). We shall prove that the right-hand side(8f) is non-negative by discussing the following two
cases separately.

Consider the case whex(s) = max , QK (s; a). Before continuing, it is easily observed from the update rule in
line 16 and linel6 of Algorithm 1 that: Vi, (s) and 1 (s) are updated hand-in-hand for evéryThus, it implies that

K(s) = arg max Qk (s; a); whenV/(s) = max Qk(s; a) (82)
holds for all(k; h) 2 [K] [H]. As a result, we express the term of interest as follows:
Vo () WK(9)= Qs k() maxQii(sia)= Qs k() Qf s; K(9) : (83)

To contIiDnue, we turn to controlling a more general t@lmk (s;@) QK(s;a)forall(s;a)2S A . Invoking the fact
k k k
Ny TNE N =1 (see p5) and 6)) leads to

Qn'(s;a) = Q#Qhk(s; a)+ ﬁ'“thk(s;a):
n=1

This relation combined with2Q) allows us to express the difference betw({qﬁ andQf as follows

Wh h i
k k n n
Q' (sia) Q(sia)= o' Q' (sid) Qi(sia) + At Qu(siad) rn(s;a) Vi (skhh)+ b
n=1
‘ N h i
k k n n
g (')\lh Qhk(S; a) Qu(s;a) + A" Ph;s;th+k1 ViK1 (Sfap ) + b
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. .
(i) %h N,l: h K KD K" I
n Ph;s;a Vh+1 Vh+1 (Sh+1 ) + bﬂ
n=1
(iii N K k " Ny ’ "
) n"Phsa Vi Vi ot n" Phsa PR Vil + by
n=1 n=1
(iv) X'E'( N K h K" K" |
n n Ph;s;a Ph Vh+l + h“ : (84)
n=1

Here, (i) invokes the Bellman equati(m]K (s;@) = rp(s;a)+ Phsa Vhfl ; (i) holds sincthk (s;@ 0= Qi(s;a);
(iii) relies on the notaionq7); and (iv) comes from the fact

K k K" .
Vh+1 Vh+1 Vh+1 !

owing to the induction hypothesis {@8) as well as the monotonicity &f,+1 in (30). Consequently, it follows from
(84) that

N«sia) ) Ngsia) )
k . n(a. n(ea. .
Q' (s8) Qli(sia) 0"V Prsa Py O v 4 0" by
n=1 n=1
N Ms;a) N Ms;a)
K (a- K (a- n . n .
r,:‘h (S'a)bn r’:‘h (s:a) Ph;s;a Pf': (s;@) th+1(s,a) 0 (85)
n=1 n=1

for all state-action pai¢s; a), where the last inequality holds due to the boad) in LemmaA.1. Plugging the above
result into 83) directly establishes that

Vi (5 VE(9)=Q, s K QEs K)o (86)

WhenVik(s) = V(" (s), itindicates that
V() =max QM (s 1°™(s) = argmax Q™ (s; a); (87)
which follows from the de nition ofk, (h) in (77) and the corresponding fact {82). We also make note of the fact that
ko= 2 M(s); (88)

which holds sincé/, (s) (and hence ,(s)) has not been updated during episollgih); ko(h)+1;  ;k 1 (inview
of the de nition (77)). Combining the above two results, we can show that

Vi () V)= Q0 s K W)= Qs K maxQr®(sia)

k. ko(h ko(h . ko(h
=Qn s M) Qe s ey

0; (89)

where the nal line can be veri ed using exactly the same argument as in the previous case tB4hand then86).
Here, we omit the proof of this step for brevity.

To conclude, substituting the relatior@6] and 89) in the above two cases back in®&il}, we arrive at
k k
Vi (8) Wn(s) O

as desired in{9). This immediately completes the induction argument.
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C.2. Proof of LemmaA.2

Observing that LemmaA.2 would follow immediately if we could establish the following relation:

N X , NMs;a) o
Ap = dy (S;@)Ph:sa po () Vide1 th+1(sa)

k=1 (s;a)2S A n=1

| lz )

=:Ank
X 1 X ) ) r H » H
1+ ) Aper (S) Vis1 (S) Vihi(s) +16 HZ2C?K log— +8HC “log —; (90)

k=1 s2S

| {z }

=IBhy

the remainder of the proof is thus dedicated to provB).(

To continue, let us rst consider two auxiliary sequent¥®s o, andfZn gk-; which are the empirical estimation of
Ank andBpk respectively. For any time stépin episodek, Yhx andZn are de ned as follows

? (k. ok N §@n san
Yoo o= d, (sp:ay) N (sfal) V& Vk (skiak) .
k= 7y (Sk'aﬁ) hisk;ak n h+1 h+1 ;
hi=h> n=1
Znk = 1+ 1 Lh?(SE;aﬁ) V.2 i
hik = H dh(sﬁiaﬁ) hiskiaf  Vh+l h+1

To begin with, let us establish the relationship betwB¥py of-, andf Zn gi-; :

” Nk k;k)
Xy X dy(skiak) R reka 2 ek
hik d (sk'ak) hisKak n h+1 h+1
k=1 k=1 ~h\7h*%h n=1 9
< Nfgsial) =
0% o' (shiah) Gnidn)p e Ve W (91)
d (s al ) hisyay, - N/ (s ;a'h); h+1 h+1
=1 ~hi7h%h N=N! (s, :al)
1 X g (s ak) X
1+ — %Ph' K -gk Vh? 1 th . = Zhk: (92)
Ho oy disiial) monsn e
Here, (i) holds by replacigg” (sh;ah) with | and gathering all terms that invoNoéﬁ?+1 th+l(3“ . ;in the last line, we
have invoked the property N (52) N Lon N =1+1=H (see(55b) together with the fact;’,; V., O
(see Lemmai.1), and have further replacédrwth k.
With this relation in hand, to verify90), we further decomposg;, into several terms
X X S @ X X
A= Ank = Yak+  (Ank  Yhk) Znx +  (Ank Ynk)
k=1 k=1 k=1 k=1 k=1
X X X
= Bnxt  (Znk Bnk)*  (Ank Yhx) (93)
k=1 k=1 k=1

where (i) follows from 02).

P P
As a result, it remains to control Eﬂ (Zhnk Bhk)and E=1 (Ank  Ynk ) separately in the following.

P
Step 1: controlling ,'le (Ank  Ynk). We shall rstcontrol this term by means of LemrBa6. Speci cally, consider

NMs;a) )
W, (s;a) = oo (s2) Vi'n th+1(s;a) ; Ca=1 (94)
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which satis es

N«sia)
I N (s:a)
n

k" (s; . .
ARG Vi, + Vel 2H =: Cy: (95)

n=1

P
Here we use the fact tha’@lhk + ,“1':'51 ,T“k =1 (see(25) and(26)). Then, applying Lemma8.6 with (94), we have with

probability at leasil  , the following inequality holds true

v
)6 %L]I )6 X 2 2 H P H
(Ahk  Yhk) = X hik 8czc? d, (s;@) Phsa WK, (s;@) “log— +2C4C’Cy, log —
k=1 k=1 k=1 (s;a)2S A
Y
0 X H H
t g Wk, (s;a) i log— +4HC?log —
k=1
r.
H H
8 H2C?K log— +4HC?log —; (96)

where (i) holds by Ph:s:a =1

P P
Step 2: controlling Ezl (Zhk Bhk). Similarly, we shall control Ezl (Zhk  Bhk) by invoking LemmaB.6.
Recalling that

1 d, (sk;ak) 1 X,
Znk Bk = 1+ Wﬂ%‘g nsgal Vier Vis 1t Ghaa(9) M () W (9) 5 (97)
s2S
consider
k . — ? k. — 1
Wh+1 (S, a) = Vh+1 Vh+1- Cog= 1+ ﬁ 2 (98)
which satis es
Wi (si8) 3 Wil 4 + Wi, 2H =1Cy (99)

Again, in view of LemmaB.6, we have with probability at leagt
v

X X gx X . > H . H
k=1 k=1 k=1 (s;@)2S A
Y
(i) X H H
t 3¢ W, (s;a) 2 log— +8HC?log—

k=1
r

16 H2C?K |ogﬂ+8Hc?|ogi; (100)
where (i) holds by Phsa | = 1.
Step 3: putting together. Substitution results in9E) and (L00) back into ©3) completes the proof of Lemnra 2 by
% r

X X X H , H
An Bhk + (Zhx  Bhk) + (Ank  Yhk) Bhk +24 H2C?K log— +12HC “log —:
k=1 k=1 k=1 k=1
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C.3. Proof of LemmaA.3

Recall that the term of interest iAZ) is given by

r. !
X 1 "t 2H oH X 1 "t
1+ﬁ 24 H2C?K log=— +12HC log— + 1+ﬁ Ih: (101)
h=1 h=1
First, it is easily seen that
1 h 1 1 H
1+ — 1+ — e for everyh = 1; i H; (102)
H H
which taken collectively with the expression of the rst term Q) yields
Ne h 1 e : w !
1 2H 2H 2H 2H
1+ 24 H2C?K log=— +12HC " log — 24e H2C?K log— + HC?log —
h=1 h=1
r——
H H
H4C?K log— + H?C?log —: (103)

As a result, it remains to control the second ternflil). Plugging the expression of (cf. (39)) and invoking the fact
(102 give

i 1 ht i 1 hIX X

2 K (-
1+ 5 In = 1+ 5 dy (s;@) ¢"H
h=1 h=1 k=1 (s;a)2S A
X LD ,  Nisa
19 1+ = d, (s: ) ll§1,1(s,ei)bn
h=1 k=1 (s;a)2S A n=1
XXX , " XX X , o NS
e dy (s;0) o" VH +2e dy (s;a) a0,
h=1 k=1 (s;a)2S A h=1 k=1 (s;a)2S A n=1
| iz bl {z )

Step 1: controlling the quantities A and B in (104). We rst develop an upper bound on the quantiyin (104).
Recognizing the fact thaf) =0 for anyN > 0 (see @5)), we have

XX X Y K (e
A=e dy (si@) ¢" MH

h=1 k=1 (s;a)2S A
XX S

eH d, (s;a) 1 Nf(s;a)<1
h=1 (s;a)2S A k=1
XX . 8 XX . X

eH d, (s;a)d7_+ eH dy, (s;a) 1 Nf(s;a) < 1
h=1 (s;a)2S A h(s:8) h=1 (s;a)2S A k=di—o—

h s;a
X X B ” 8 Xt X 2 5 X 2
= eH d, s °(s) ———5——+eH d, s; ?(s) 1NEs; P(s) <1

h=1 s25 dy s; *(s) h=1 s25 k=d—8

— % ——¢€
dp (si 7 (s)

where the last equality holds sincé is a deterministic policy (so thaih? (s;a) 6 0 only whena = ?(s)). Recalling

ddhh'((ss;f)) C? under Assumptioi.1, we can further bound by
? XX ? 2 X ?
A 8eH?SC’ + eH d, s; ?(s) 1NEs; P(s) <1
h=1 s2S k=d—2®8
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=8eH?SC?; (105)
where the last inequality follows since whkn dh?isa) one has — with probability at least — that
k .
Nk (s; @) L‘és’ T

holds simultaneously for afls; a;h;k) 2S A [K] [H](asimplied by §739).
Turning to the quantity in (104), one can deduce that

XX X ? NMs;a) NK(sia)
B =2e d, (s;a) n" oy
h=1 k=1 (s;a)2S A S n=1
S
xox X 67 (s:a) H3 2 X"X‘Xd? ’9) H3 2 (106)
h (S;a NKieio 1 = Hh S; (S k—, 106
h=1 k=1 (s;a)2S A Np(sia) _1 h=1 k=1 s2S Np s 7(s) _1

where the inequality follows from inequalify5), and the last equality is (\.qlalid sincé is a deterministic policy. To further
control the right hand side above, Lemiz provides an upper bound for 1= NX s; ?(s) _ 1 which inturn leads to

S

P X X X & s (9 1
B. H RIS R ———
h=1 k=1 s2S kd, s; *(s)
p_____X X X 49 77r 1
H3C? 3 d, s; *(s) K
h=1 k=1 s2S
O — — .
H5C?K 3max d, s; ?(s)
h s2S |
S 5 :
pi’) P— ? s pi,,
H5C?K 3 S d, s; ?(s) H5SC?K 3; (107)
s2S

where the second inequality follows from the f{%}% C? under Assumptior®.1, and the last line invokes the
Cauchy-Schwarz inequality.

Taking the upper bounds on bothandB collectively establishes

N 1 h1 . P
1+ = l, A+ B. H?SC? + HS5SC’K 3: (108)
h=1

Step 2: putting everything together. Combining (03 and (L08) allows us to establish that
r.. !
X 1 ! 2H 2H P
1+ = lh+16 H2C?K log=— +8HC’log=— . H2SC’? + H5SC?K 3;

h=1 H

as advertised.

D. Proof of lemmas for LCB-Q-Advantage (Theorem4.1)

Additional notation for LCB-Q-Advantage. Let us also introduce, and remind the reader of, several notation of interest
in Algorithm 5 as follows.

NK(s;a) (resp.N,ﬂm;t ) (s; @) denotes the value M, (s; @) — the number of episodes that has visi{eda) at steph
at thebeginningof thek-th episode (resp. theeginningof t-th episode of then-th epoch); for the sake of conciseness,
we shall often abbreviatd X = Nf(s; a) (resp.N™") = N™")(s; a)) when it is clear from context.
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= 2™: the total number of in-epoch episodes in theh epoch.

ki (s; @): the index of the episode in whidls; a) is visited for then-th time at time stefn; (mp, (s; a); t (s; @) denote
respectively the index of the epoch and that of the in-epoch episode in gighis visited for then-th time at
steph; for the sake of conciseness, we shall often use the shortfardkf, (s; &), (m"; k") = ( mp (s; a); ki (s; @)

whenever it is clear from context.

Qk(s;a), QL% (s; ), GE (s;a) andVk(s) are used to denot®(s; ), Q:B(s;a), Qn(s;a), andV;(s) at the
beginningof thek-th episode, respectively.

h(s) VEeth(s) K(s;a); *”e"tk(s a) denote the values of(s); VEeXt(s);*h(s;a) and—1®(s; a) at thebegin-

ning of thek-th eplsode respectively.
0™ (s; a) representslt, (s; a) at thebeginningof thet-th in-epoch episode in tha-th epoch.

R ePO™ (s; &) denotes®(™" " ™ (s; &), representing the number of visits( a) in the entire duration of then-th
epoch.

. . . —k - L
refl.refik. advk . advk. “K.BX-B1- the values of [of; fef; 2% adv-~ -BB,] at thebeginningof the k-th

episode, respectively.

In addition, for a xed vectol 2 RIS let us de ne a variance parameter with resped®t@.. as follows
h i
2
Varysa (V) = o E V(s9 Phsia V = Phsa (V3 (Ph:s:a V)% (109)

h;s;a

This notation will be useful in the subsequent proof. We remind the reader that there exists a one-to-one mapping between
the index of the episodeand the index paifm; t) (i.e., the epoctm and in-epoch episodg, as speci ed in(45). In the
following, for any episodd&, we recall the expressions ¥f,.; and—;, (which is the running mean &f 1 ).

Recalling the update rule &f;, andVﬂeXt in line 34 and line35 of Algorithm 5, we observe that both the reference
values for the current epodh, and for the next epocﬁﬂext remain unchanged within each epoch. Additionally, for

any epochm, V, takes the value dVEeXt in the previougm 1)-th epoch; namely, for any episoléhappening in
them-th epoch, we have

—nextk®

V=V (110)
for all episodek® within the(m  1)-th epoch.

i serves as the estimate®fs:, Vﬁﬂ constructed by the samples in the previ¢uns 1)-th epoch (collected by
updating h®*"). Recall the update rule of, in line 34 and line29 of Algorithm 5: for any(s;a;h) 2S A [H],

we can write X as

,h(s a)_ ,(m 1)(S a) ,next(m 1)(S a) ,next(m 1Lm 1)(3 a)

P N|5m g Vnextk ( P Nr(]m n V (Ski )
=N (™ LD Y il h+l _ =N mD4g Vhel he

ePo™ Y(s;a) 1 - e Ysia) 1

; (111)

where the last equality follows froifi10) using the fact that the indices of episodes in wh(igfa) is visited within
the(m 1)-thepochardi:i= N{™ "D +1;N(™ 42, NM™Yg,

Finally, according to the update rules dﬁ“";km (s;ak) and ﬁd";km (sf;ak) in lines11-12 of Algorithm 3, we have

dvik"*t k. oky —  advik"+1 k. oKy — dvik" k. ok k" k" .
ﬁv (Shran) = ﬁv * (snyan) =(1 n ﬁv (Sh:an) *+ n Vhur (Shar) Vh+1(5h+1 ;
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dvk" ™ k. oky —  advik"+1 / k. oKy — dvik™ / ok . K K" ok” Tk k™ 2.
-t (shraf) = B0 T (sfian) = (1 n) no(shian) t on Viha (Sfer) Viaer (Sher)

Applying this relation recursively and invoking the de nitions Q')!’E in (25) give

k k
%h k Xh n
LAY — NE 5k n K" advkNA 41 Ly NP K" VA
(s;@) = n"Ph Ve Vher 5og (s;@) = n"Ph Vi Via
n=1 n=1

2. (112)

K
advik N h +1
h

Similarly, according to the update rules d:ff;kn+1 (s;a) and ,’ff;knﬂ (s;a) in lines9-10 of Algorithm 3, we obtain

refk™™ sy —  refik"+1 oy _ 1 rerkn .. Lgmextk™ o .
n (s;a)= | (sa)= 1 — 7 (sa+ Vi (Sha);
refk"™ ™y refik"+l Ly 1 refk” . 1 grexek” o
h (s;a)= 4 (s;99= 1 oooh (s;@)+ o Vha (Sh+1
Simple recursion leads to
R « X
refkNh 41 Ly 1 nnextk” refkMi+1 oy o 1 nognextk® 2,
h (s;a) = NEK Ph Vi + g (sia) = NEK Ph Vi : (113)
h n=1 h n=1

D.1. Proof of LemmaA.4

Akin to the proof of LemmaA.1, the second inequality ofi{) holds trivially since
Vi (8) V()
holds for any policy . Thus, it suf ces to focus on justifying the rst inequality o), namely,
V() W' () 8(kihis)2 K] [H] S ; (114)
which we shall prove by induction.

Step 1: introducing the induction hypothesis. For notational simplicity, let us de ne

n n 00
ko(h;k;s) =max |:1<k andV](s) = max max Q%% (s: a); Q) (s; a) (115)

for any(h;k;s) 2 [H] [K] S . Herekq(h;k;s) denotes the index of the latest episode — right at the end of the
(k  1)-th episode — in which/, (s) has been updated, which shall be abbreviateki, &%) whenever it is clear from
context.

In what follows, we shall rst justify the advertised inequality for the base case whered + 1 for all episodek 2 [K],
followed by an induction argument. Regarding the induction part, let us considér2arfi ] and anyh 2 [H], and suppose
that

Vh"oo(s) Vhok (s) forall(k%h%s)2 [k 1] [H+1] S ; (116a)
Vi(s) Vhok (s) foralh® h+1ands2S: (116b)

We intend to justify
V() W, (s) 8s2S; (117)

assuming that the induction hypothes&$6) hold.
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. P Nk k" . . .

Step 2: controlling the con dent bound E:'“l N b, "' Before proceeding, we rstintroduce an auxiliary result on
. k KoK" . . i, .

bounding 2‘;1 2‘“ b, . , Which plays a crucial role. For ar{g; @), it is easily seen that

NMs;a) ) o L
a) | a)+
N#(S, a) =0 - ) rl:lh (s;a) hq (s;a) =0: (118)
n=1

WhenNK(s; a) > 0, expanding the de nitions dil:n . (cf. line 6 of Algorithm 3) andfﬁ+1 (cf. line 15 of Algorithm 3)
leads to

k
%h r'-l\lrl:Brk]n_'_l
n=1
%}5 V# 1 _—k" 1 _kn %rl‘( Nfl: %"1( N}f
=" . @ ) 1 = Bp(sa+ By (58 +o o H™+q H?
n=1 i=n+1 n n n=1 n=1
U 4 i ! R NK Wi N
—k"+1 —k" h - n
= @ (@ DBy (s@ (1 0By (s@fAto  gHT +e  oH?
n=1 i=n+l i=n n=1 n=1
Q Ry K" 41 U o ) LIS e N
B B n = n
= 1 By (sid) 1 DBy (sia)+ & H™ + o ——H?
n=1i=n+1 n=2i=n n=1 n=1
WKW \ N 1 ) NN Wi N
(it) —k"+1 — KN+ _
= (1 0By (sid) (1 0B, “(sia+ o ggH™ +a SoH?
n=1i=n+1 n=1 i=n+1 n=1 n=1
3 K k k
Nk o N Vo N
=By (s@)* 0 agH™ +q HZ; (119)
n=1 =1

. el
where we abuse the notation to %Ljﬂ (1 i) = 1. Here, (i) holds sincd (s;a) = 0, (i) follows from the

N _n+l
fact thatB"* ™ (s;a) = B (s;a), since(s; a) has not been visited at stbpduring the episodes between the indices

.. . . . P N K N
k" +1 andk"*! 1. Combining the above result {119 with the properueW nty i W and
1 P 2 -
NF ne1 NF (see Lemmd.1), we arrive at
K 7=4 2 Wi K 7=4 2
kNn+1 H'= H NKk"+1  =kNn+1 - H
Bh (5a)+ Corqazr + o n" Bh ($;8)+2C—ag ¥ 20— (120)
(N§F= - ONE (Nf)3= N

as long adN [k (s; a) > 0.

Step 3: base case. Let us look at the base case with= H +1 for anyk 2 [K ]. Recalling the facts that, ., = V)X,;, =0
forany andanyk 2 [K], we reach

V,Ll (s) Vy k+l (s) forall (k;s) 2 [K] S : (121)

Step 4: induction arguments. We now turn to the induction arguments. Suppose thaf) holds for a pairk; h) 2
[K] [H]. Everything comes down to justifyind.{7) for time steph in the episodé.

First, we recall the update rule ¥ (s) in lines25-26 of Algorithm 5:
n 0
- —k
Wi (s) = max Qfi(s;@) = Qff s; K(9) =max Q™ s () 1Qn s K(9) Q5 T s K9

Then we shall verify 117) in three different cases.
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WhenV(s) = QhCB;k s; £(s) , the term of interest can be controlled by
K 0 ~ « -
Vo () V(9= Qs k() QL s fi(s) o

where (i) holds since® is set to be the greedy policy such tNﬂtk (s) = Qhk (s; K(s)); and the last inequality
follows directly from the analysis fdtCB-Q (see 85)).

WhenVi(s) = Qp s; K(s) , we obtain
Vi (8) V()= Q' s K(s) Qs K(9) (122)

To prove the term on the right-hand side(d22) is non-negative, we proceed by developing a more general lower

bound orQhk (s;a) GE(S; a) forevery(s;a) 2 S A . Towards this, recalling the de nition dﬂ,‘f andk", we can
express

A= o (s
Thus, according to the update rule (cf. linén Algorithm 3), we arrive at
s = 0 (sl
c W A g s W E) Ve 1 s B

Applying this relation recursively and invoking the de nitions cgm and ,':'“k in (25) give

k

Ko "
—k k1 k n n —k" n n K"+l
A= 0"+ 0" s VGG Via(sha)* (s B (123)
n=1
. . K . . NK P N K N K .
Additionally, for any policy *, the basic relationy™ + 1, n" =1 (see g6) and @5)) gives
3
Kk er: k %h Nr‘\( Kk
Qn (si8)= (" Qp (s;8) + n"Qpn (s;a): (124)
n=1
Combing (123 and (L24) leads to
—k k k —1
Q' (58 Qnisia)= 5" Qy (558 Qn(sia)
k
R N K K" k" K" kn k" k" +1
+ n" Qn (558 rn(S;@)  Viir (Shea) + Viaer (Sper) h(s;@)+ b, : (125)
n=1
Plugging in the construction of;, in (111) and invoking the Bellman equation
Qn (5:@) = ra(S;8) + Phsa Vhay ; (126)

we arrive at

k . . K" K" —k" K" _Kk" i —k"+1

Qn (s;@) rn(si@)  Viuy (Sher)t Ve (Shea)  h (S58) + by

P nm™n — k" Ki
i:th(]mn LY 4q Vh+1 (Sh+1)

e Ysia) 1

k" +1

_ k —k" K" K" K"
= Phsa Vher + Vier (Sher)  Viea (Shea) +
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o n. 1
P (m" ;1)
Ny©

i=N{™T B4

ePom” Y(sia) 1

Kk KN KN K" —k" %
Phsa Vher Vi1 (Shaa) + Ph Phsa Vhi + @Phsa

k kn n .
Phsa Vo Vier th T+ §

where 0 P\ (miy 1
Ny Pk'
i=N{m" D4 T h X—k”

K" o k" K" K" .
= PX Phea V VKL + BoPhs Vo Ve (127)
h h Sa h+1 h+1 Sa I@ﬁpo,m 1(5; a) 3 1 h+1

Inserting the above result intd25) leads to the following decomposition

4 :
Kk —k k k —1 k k n —k"+1 n
Q' (s:8) Qn(sia)= " Qy (518 Qn(sid) + A" Prsa Ve Vin +B o+ K (129)
n=1
X o )
Nt K (129)
n=1

which holds by virtue of the following facts:
(i) The initialization@ﬁ(s; a) = 0 and the non-negativity a@,, (s; a) for any policy and(s;a)2S A leadto
Q) (58 Qn(s;a)= Q' (sia) 0.
(i) For any episod&"” appearing befor&, making use of the induction hypotheis/l,$+kl (s) V&, (s)in(116H
and the monotonicity o, (s) in (46), we obtain

k n n
Vh+1 (S) Vhk+1 (S) th+1 (S) th+1 (S) 0: (130)

The following lemma ensures that the right-hand sidél@b) is non-negative. We postpone the proof of Lenima
to AppendixD.4 to streamline our discussion.

Lemma D.1. For any 2 (0; 1), there exists some suf ciently large constant> 0, such that with probability at
leastl

Xrl‘( Kk ng4
Nege Tty gk 2 [K: (131)

n=1 n=1

Taking this lemma together with the inequalitié2®) and (29) yields
K K(e) — K e e
Vi (8) Vi(s)= Qn (sia) Qp(s;a)

Next, consider the case whevg (s) = QE 1's; K(s) . Inview of the de nition ofk,(h) in (115), one has

n (0]
. —_ ko h . —_ LCB;ko h . .7k0(h) . .
VEES) = QK T s K(s) = Q™ s K(s) =max QiR s Kk(s) Q™ s K(s)

sinceQn s; K(s) has not been updated during the episkglén) and remains unchanged in the episokigé) +
L ko(h)+2; ;k 1. With this equality in hand, the term of interest ihl(/) can be controlled by
n 0
- —ko(h
V(9 VK= Q) (s k(e max Q™ s k(e iQp™ s ki) o

where the last inequality follows from the facts

Qhk(s; ﬁ(s)) QhCB;ko(h)(S; E(S)) (i) o
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=ko(h)

K K ‘ (i)
Qn (s; 7(s)) Qn (s; n(s) O
Here, (i) follows from the same analysis framework for showidd) @nd @6); (ii) holds due to the following fact

NKo(h)
—ko(h ko(h) _ykn 41 n
Q' (sa) Q"(sia) G I
n=1
which is obtained directly by adaptir{29 and then invoking131) for k = ky(h); since the analysis follows verbatim,
we omit their proofs here.

Combining the above three cases veri es the induction hypothesidlin,(provided that 116) is satis ed.

Step 5: putting everything together. Combining the base case in Step 3 and induction arguments in Step 4, we can
readily verify the induction hypothesis in Step 1, which in turn establishes Lefha

D.2. Proof of LemmaA.5

For everyh 2 [H], we can decompose

X X, ) L XX s o — -
dy (S) VW (s) Vh(s) d, s; p(s) Qs n(s)  Qn sy n(s)
k=1 s2S k=1 s2S
X X , 7 e
= dy, (s;a) Qp(sia) Qp(s:a) ; (132)
k=1 s;a2S A

where (i) follows from the fact/X(s) = max , QK (s;a) maxa Or(s;a) O (s; £ (s)) (see line5-26in Algorithm 5).
Here, the last equality is due t85).

— P
Step 1: boundingQ/(s; a) QE (s;a). The basic relation’(;": + E:“kl r’:'ﬁ =1 (see @6) and @5)) gives
2 NK 2 th NK 2
Qi(s;a)= " Qn(sia)+ n" Qp(s;a); (133)
n=1
which combined with123) leads to
—k k —1
Qi(sia) Qu(si)= 5" Qi(sia) Qn(sia)
k
X N A2/ ) K" rok” K" ek K" e
+ n" Qp(s;d) rn(s;d)  Viii(Sher)+ Ve (Shea)  Th (S;8)+ by : (134)
n=1
Invoking the Bellman optimality equation
Qn(sia) = rn(s;a) + Phsa Viju ; (135)

we can decompos®; (s; a) 6::(8; a) similar to (128) by inserting (27) as follows:

o
? (- =k, . — N K ? (- =1, N K 2 K" —k"+1 K"
Qn(s;d) Qp(s;a= " Qn(s;a) Qp(s;a) + N Prsa VA VKL +h o+ K
n=1
k k
(OBENY X NE k41 n Ko K
k N ’) n
o"H + n" b, + 5 t n"Phsa Vhit  Vis
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X X
0 ' e
’(;Ilf H + r’:llh{ Ph;s;a Vh?+1 th+1 +2 r’;lrl]( bﬁ "
n=1 n=1 |
) !
(i) Ko ) — H7=4 2
N+ NiPiea VA, VKL +2 Bi(sia)+20 7+ 20— ; (136)
n=1 Nf_1 Np_1

where (i) follows from the initializatior@ﬁ(s;a) = 0 and the trivial upper boun@®,,(s;a) H for any policy , (ii) holds
owing to the fact (se€l@1))

L K K
—k" +1 k k" +1 k Kk +1

" + BTtk 2 (137)

n=1 n=1 n=1 n=1

N K
and (i) comes from 120) with the factﬁﬁ " (s;a) = §E (s; Q).

Step 2: decomposing the errorin(132). Plugging (36) into (132 and rearranging terms yield
X X

dy () V() Vi(s) (138)
k=1 s2S "
X X 7=4 2 #
dy (s;a) glﬁ(s;a)H +2Bj(sia)+ s =4 " Nk40b-H 1
k=1 (s:2)2S A NK(s;a) _ 1 h(S:a) _
X X ) NS .
+ dy (S;@)Phsia A (52 Vil th+1(s'a)
k=1 (s;a)2S A " n=1 4
X 5 Ko 4c.H 74 H?2 X X ” ]
dy (s;8) " VH + % % +2 dy (s:8)B s(s; a)
h 0 K(a =4 NKk(s;a) _ 1 h h
i<:1 (s:a)2S A Ni(s;a) _ 1 h A=< — k=1 (s;a)2S A {7 )
=: Jﬁ = Jﬁ
X X ) NS "
+ dy (S;@)Phsa r':‘h ) Vh?+1 th+1(s,a) : (139)
k=1 (s;a)2S A n=1
Step 3: controlling the last term in (139. If we could verify the following result
X X , Ny "
dy (S;@)Phsia r';lh (s:2) Vh?+1 th+1(5’a)
k=1 (s;a)2S A n=1
r—
1 X ” ) K 5 2H 3 P = 2.
1+ dyag (S) ViZp (S) Vi (s) +48 HC?K log=— +28c,H3C? S 2 (140)
| s2S {Z }

=38

then combining this result with inequalif¢39 would immediately establish Lemn#a5. As a result, it suf ces to verify
the inequality {40), which shall be accomplished as follows.

Proof of inequality (140). We rst make the observation that the left-hand side of inequélith0) is the same as what
LemmaA.2 shows. Therefore, we shall establish this inequality following the same framework as in ApgeRadio
begin with, let us recall several de nitions in Appendix2

X X , Njsa) .
Ap = dy (S;@)Phsa po (5 Vit th+1(sya) ;
k=1 (s;a)2S A n=1
{z }

=:A hik
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1

Bhk = 1+ v} Onea (S) Viba (S)  Via (9)
s2S
. N K gk :ak)
Yoo = dh'(sﬁ;aﬁ) L &R 2 N (sfak) Vi Vk”(sﬁ;aﬁ)
T (sfa) e T o The '
n=

- 1 dy(sf:af) ? kKo

Znk = g dy (Sk;ak)  MshE Vihor Ve (141)

and we also remind the reader of the relationd8) @s follows

x

X X
An Bhk + (Zhnk  Bhx)+ (Anx  Ynx): (142)
k=1 k=1 k=1

P P
Equipped with these relations, we aim to controbf=1 (Znk Bnk)and E=l (Ank  Yhk ) respectively as follows.

P
We rst bound E:1 (Ank  Ynk), which is similar to 96) (as controlled by LemmB.6). Repeating the argument
and tightening the bound from the second lin€38), we have for al(h;s;a) 2 [H] S A , with probability at

leastl
U
X X X 2H 2H
(Ank  Yhk) t 8CciC? dy’(S:8) Phsa WK, (5i8) “log == +2C4C7Cy log =~
k=1 k=1 (s;a)2S A
Y 4 32
u N §[s;a)
oH X X X . n (s 2H
t sc? log— dy’ (s;8) 4 NP Vita Vi ™ 5 +4HC’log =
k=1 (s;a)2S A n=1
r
2H 2H
8C?log — (36HK +3c2H6SC? )+4HC " log —
r
2H P~
32 HC?K log=— +12¢,H3C” s 2 (143)
Here, (i) holds by virtue of the following fact
2 3
X X NgE L o
d,’ (s;a) 4 AP VW V) 5 36HK +3cZHOSC?; (144)

k=1 (s;a)2S A n=1

whose proof is postponed to Appendix2.1

P
Next, we turnto Ezl (Znk  Bnxk ), which can be bounded similar ¢@00) (as controlled via LemmB.6). Repeating
the argument and tightening the bound from the second lingGdj ield

\

X b X 2H 2H
(Bhk  Znk) t 8c3C? d,’(s;@) Phsa WK, (s;8) %log 2t + 2¢c4C7Cy log 25
k=1 k=1 (s;a)2S A
v X
2H X 2H
8%J C?log — d,’(S;@) Phsa Viay VK, 2 +8HC? log —: (145)
k=1 (s;a)2S A
To further control {45), we have
)6 X 2 ? k 2 0 )6 X 2 ? k 2
d,’(s;8) Phsa Vhaa  Vhe dy’ (s;@)Phsa Vher  Via

k=1 (s;a)2S A k=1 (s;a)2S A
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i X X , .
H dy"(s;8)Phsa Vhar Vi
k=1 (s;a)2S A
(i)
2HK + c2H®sSC?: (146)
Here, (i) holds due to the non-negativity of the variance

—k 2
Varh;s;a (Vh?+1 Vh+1 ) = Ph:S;a (Vh?+1 th+1 )2 Ph;S;a (Vh?+1 th+1 ) 0; (147)

(ii) follows from the basic propertyV,?,; V¥, 1 H ; to see why (iii) holds, we refer the reader(ib4), which
will be proven in AppendixD.2.1as well. Inserting146) back into (45) yields
r
X
(Bhk Znk) 8 C?log A (2KH + c2H®6SC? )+8HC? Iogﬁ
k=1

r—..
2H p_
16 HC?K log=— +16c,H3C? S (148)

Substituting the inequalitied43) and (48) into (142), and using the de nitions inl41), we arrive at

X ox e L .
An = dy (s;@)Phsa r';lhk(s’a) Vh?+1 th+1(s’a)
k=1 (s;a)2S A n=1
, X X
I+ Onsez () Va1 () Ve (8) + (Znk Brx)*+  (Ank Ynk)
s2S k:]f' k=1
1 X 2 K 2H s2P =2
1+ o Ohig (8) Vis1 (S) WG (s) +32 HC?K log— +12¢,H°C™ S
s2S
r

+16 HC’K log H, 16c,H 3c?p S
L X . ) T Pz
1+ o Oisy (S) Vihg (S) VK (s) +48 HC?K log=— +28c,H3C? S ?; (149)
s2S
which directly veri es (L40) and completes the proof.

D.2.1. FROOF OF INEQUALITY (144)
Step 1: rewriting the term of interest. We rst invoke Jensen's inequality to obtain
X 2 X 2 X 2

NK 2 K" N 2 K N 2 n
n"Phsa Vis Vha n" Phsa Vhia Vi n"Phsa Vhi Vi
n=1 n=1 n=1

P
where the rstinequality follows from ,Tfl ﬁ'; =1 (seg(26) and(25)), and the last inequality holds by the non-negativity
of the variance/arsa [Vi%,; Vi 1. This allows one to derive

2 3,
)(( X NMS,&) N k(S'a) P n
dh? (s;a) 4 n" " Phsa Vhi th+l 5
k=1 (s;a)2S A n=1
)6 X %r‘: N k P n 2
dy’ (s; @Phsa n" Vi Vi
k=1 (s;a)2S A n=1
r—.._
0) 1 XX 2H 2H
1+ o dor () VA (S) Vi, (s) +32 HA4C?K log 2 +32H2C? log 2 ; (150)
k=1 s2S

where (i) can be veri ed in a way similar to the proof of Lemm& in AppendixC.2. We omit the details for conciseness.
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Step 2: controlling the rsttermin (150. Letus introduce the following short-hand notation
Kstop = CGH°SC”;

and decompose the term ib50) as follows

X ., X ) . S0 XX, , )
dh+1 (S) Vh'+1 (S) Vh+1 (S) H dh+:L (S) Vh'+1 (S) Vh+1 (S)
s2S k=1 k=1 s2S
Seor X, ) XX, )
=H nsg (8) Vi1 () Vip(s) +H ns (8) Vidar () Vi (s) (151)
k=1 s2S k= Ksoptl s2S

Here, (i) holds sinc® V%, (s) V/,(s) H.The rsttermin (15 satis es

Koo X q___
H Oher (8) VA1 (8) Vii(s)  H ca HS5SC? Kgpp+ CaH?SC? c2H®sC?; (152)
k=1 s2S

where the rstinequality holds by applying the resultsl@B-Q in (44) with K = Kgop. The second term i(iLl51) can be
controlled as follows:

H )6 X d 2 ? K X ? ? kstop
h+1 (S) Vh+1 (S) Vh+1 (S) HK dh+1 (S) Vh+1 (S) Vh+1 (S)
k= ksop+l 25 s2S

l %top X
HK

K Ay (S) Vh?+1 (s) th+1 (s)
Smpsk:l 528 |
H5SC?  cH2SC?
HK ¢ ;& 2HK: (153)
I(stop kstop

where the rst and the second inequalities hold by the monotonicity propﬁﬁﬁr VK., introduced in(46), and the nal
inequality follows from applying44).

Inserting the results in62) and (53 into (157) yields
X

? X( 2 X( X ?
dhet (8)  Vik1 () Vies (8) H dhe1 () Viha () Vi (s)  2HK + GH®SC™:  (154)
s2S k=1 k=1 s2S

Step 3: combining the above results. Inserting the above result$4) back into (50), we reach:

XX “Njgee NS >
dh?(S;a)4 nh(s'a)Ph;s;a Vh?+l th+1 5
k=1 (s;a)2S A n=1
r
1 XX 2H 2H
1+ = Ay (5) Vi2y Vi, +32 H4C?K log 2= +32H2C? log 2

k=1 s2S
r

)
4HK +2cZHOSC? +32 H4C?K IogZ—H+32H2C?Iog

(i

H

(i)
36HK +3cZH®SC?; (155)

where (i) holds due tol64) and1 + Hi 2, and (ii) results from the Cauchy-Schwarz inequality.

D.3. Proof of LemmaA.6

We shall verify the three inequalities iB4) separately.
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D.3.1. lROOF OF INEQUALITY (549

We start by rewriting the term of interest using the expressiahtdh (51) as

i L
1+ Jt
h=1 . )
h 1 =
= X 1+ 1 X d, (s;a) ON"k(S;a)H + AopH ™ L
! 3=4 K(a-
h=1 H k=1 (s;2)2S A NK(s;a) _1 Np(s;a) _1
X 1 hiXx X , . Ne 1 hoIx X . 4o H 7=
= 1+ = d, (s;a) N EVH + 1+ = d, (s;a) kcb _
=1 H k=1 (s:3)2S A =1 H k=1 (s:a)2S (Nf(sia) _ 1)%
T i: b0 il )
:;\]11 22312
Xt 1 h 1) X ” 4c.H?
+ 1+ = d, (s; a)kcbi ; (156)
=1 H k=1 (s;a)2S A Np(s;a) 1
[ Of )
=J8
Invoking (105 and (L02) yields
Jl. H2%sC?: (157)
In terms ofJ 2, one has
X h 13X X , 7=4
JZ= 1+ l d. (S;a)L
1 H h Nk . 1 3
h=1 k=1 (s;a)2S A (Np(s;@) _ 1)a
M XXX )
S HE 4 ($58) 0 T
h=1 k=1 (s;a)2S A (kdy,(s;@)
) X X 3 1
Hentt TS & (59
h=1 k=1 K? (s;2)2s A
XX q X

1
e 2(C?)% 1 a= ,?1(8) d, (s;a) s

)

h=1 k=1 (s;a)2S A

where (i) holds due t¢102 and k(;a) I Kd Eis‘a) from LemmaB.2, and (ii) follows from the de nition ofC? in
h\=>a)_ h S

Assumption2.1 A direct application of llder's inequality leads to

0 1540 194
2 7=4 20~ 3 XX X 2 X ?
Ji HTACH)* =@ la= f(sNA @ dy (s;0)A
h=1 k=1 ** (s;a)2S A (s:2)2S A
(i) o X . s
H7=* 2(SC?)* 3 H27™(SC?)*K 7 2; (158)
7

h=1 k=1
where (iii) follows since ? is assumed to be a deterministic policy.

Similarly, we can derive an upper bound &§ as follows:

X h 1) X , 2
13=" 1+ 4 (si) 2
! H h NK(s;a) 1
h=1 k=1 (s;a)2S A h A= 5 —
0] XX X d ?(S'a)
. H2 2 h ) . H3 ? 3. 1
7kdh (52 SC* 7 (159)

h=1 k=1 (s;a)2S A
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where (i) follows from the result 102 and the fact ¢ (Sla) T id (Sa) (cf. LemmaB.2), and the last relation results
from the de nition of C? (cf. Assumptior2.1) and the assumption that is a deterministic policy.

Putting the preceding result$q7), (158 and (59 together, we conclude that

N 1 ht

1+ Jp. HPS(SCTIK® 2+ H3sC? *: (160)
h=1

D.3.2. lROOF OF INEQUALITY (54b)

Making use of the de nition oﬁlﬁ(s; a) (cf. (14)) in the expression af? (cf. (51)), we obtain

X 1 h1 X LS , B
1+ J2=2 1+ d.’ (s:a)BF(s: a)
h=1 h=1 k=1 (s;a)2S A v
U
X! h1 p__ X . X advik /.. advk
=2 1+ Hi o H d, (s;a) £ (S;\laz : (S 3
h=1 (s:a)2S A k=1 n (S; a) _
i
u
X h 1 X , X refk refk
+2 1+ i Cbp7 d F(S;a) P (S a) (S a)
H " NK(s; a)
h=1 (s;av)zsA k=1 hisS: &) _
u _ _
P X L B CL
dy (s;@) x
h=1 (s;a)2S A k= N/ (s; a)
| Tz )
=3}
U
X X , X refik g o refk s 4
P 4 (s:a) o Ni | ( ) ° ’ (161)
h=1 (s;a)2S A k=1 h (S,a) _
| {z }
=32

where the last inequality follows fron1Q2). In the following, we shall look at the two terms ih&1) separately.

. AN K
Step 1: controllingJ . Recalling the expressions of ™ (s;a) = 24k "*1

(s;a) in (112, we observe that the main
part ofJ } in (161) satis es

Vv
u
u S
)(‘l X , )6 P advk(s a) ade(S a) pi)('l X )6 , d ”(S’ a) ﬁdV;k (S, a)
d (si9) NK(s: ) 4 (ST 4 59
h=1 (s;a)2S A k\71 h A= 5 — h=1 (s;a)2S A k=1 hA=
u ? P k n n k" 2
p X X x a7 )dh'(S;a) ?fsa) R Y VA
= h (S8, .
h=1 (s;a)2S A k=1 v kdy, (s; a)
u N [s;a)
0Op__X X X‘yl 7 s NK (s ) g 2
c? R1 a= [(s) d,(s;a n“(s‘a)Pt'f VKL Vi
h=1 (s;a)2S A k=1 n=1
v
N u N [s;a)
M p X X X . X i ninz)(()(“ X 1
ct d,’ (s;a) NrRpke ke KD t 1a= 7(s)
k=1 h=1 (s;a)2S A n=1 k=1 h=1 (s;a)2S A
v
u
u N {(s;a)
p x X . X 2
HSC? 2t d.’ (s; a) NiGsRpke ke g (162)

k=1 h=1 (s;a)2S A n=1
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where the rstinequality is due to the faN.k( a1 K (S ) from LemmaB.2, (i) follows from the de nition ofC? in

Assumption2.1and(35), and (ii) follows from the Cauchy -Schwarz inequality. To continue, we claim the following bound
holds, which will be proven in Appendi®.3.4:

X X X . N sa) L e 2
d, (s;a) S VA R Vi,
k=1 h=1 (s;a)2S A n=1
X X ? ? Kk P— 2
H2hrrz1i';|1_|x] d, (s) W(s) V&(s) +K+H®> sC?2 (163)
k=1 s2S
Combining the above inequality with§2), we arrive at
i
piﬁ XX > P~
Ji. H2sC?3 thn;ﬁf(] d, () V2(S) Vik(s) + K+ H5 SC?2
k=1 s2S
M S
H X X ) P . _—
H4SC? 3 max d.’(s) V2(s) VK(s) + H2SC?K 3+ H¥%SC? %5; (164)
h2[H] h h h
k=1 s2S
k
Step 2: controling J2. Recalling the expressions of ™ (s;a) = %" *1(s.5) and [¢f**1(s;q)
k
refk"0 41 (58 in (113 to J 2 in (161), we can deduce that
v z
, p,X.' X , N P refk(S a) refk(S a)
Jf= d, (s;a) NK(s a)
h=1 (s;a)2S A k=1 f:/ ' —
S 7H P Ny (sia) V”Eth 2 P NKk(sia) onextkn
pX X d ?(S'a)% 1 t = h+1 (h+1 i Vi (Sfh) 2.
h = K(a- K(a- K
h=1 (sia)2s A =t Nn(Si3) 1| Nn(s:a)_ {z Nn(s:a) _1 )
= Fh;k
(165)

We further decompose and bouRglk as follows:

v
u P yk(e n
; N[ (s;a) 2 N K (s;a) o7nhextk
bk 0 F n= l \% +1( h+1 n=hl Vh+1 ( h+1) 2
’ NK(s;a) _ NK(s;a) _1
v
u PNk(sa) 2 PN (sa) I:’N (sa) I:)N (sa)—nextk
P n=1 Vi (Shs Vil (Shig) 2 Vil (Shia) 2 Vi (i) 2
NK(s;a) _1 Nf‘f(s,a)_ Nk(s,a)_ Nr'f(s, a_1
v
\d PNk(sa) 2 PN (sa) u I:)N}f(sa) —nextkn
G NSy skt Vi (ki) 2t 2H Vi (stha) Vi ()
| N¥(s;a) _ 1 {z N#(s,a)_ L Nhk({sz;a)_ }’
Ghk = Lhk
(166)
where (i) follows from the fact that for somé 2 [K ], Vﬂixltk = VK, V2, (see the update rule 8" in line 35

and the fact in47)), and (ii) holds due to the fact that

P P P Nk(s;a) ’ n —next;k"
r':‘hl(sa) Vies (Sfay) 2 “(Sa)VEixltk (Shes) 2 . n=1 Vi (SKi1) Vet (Sha
NK(s;a) _ 1 NK(s;a) _ 1 NK(sia) _ 1
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Inserting (L66) back into (L65), we arrive at
s

i PN G L (G * Lik)
2 h (S8 Tkra a1 Ghk + Lhk
h=1 (s;a)2S A k=1 Np(s;a) _1
(0] [ - -
VP P O3S T+ HesC? 3+ P HISCIK 2+ H255C73 . T HISCIK S+ HASCT 4 (167)

where (i) follows from the following facts

S
X X ’ X 1 p R
d, (s;a) ——————Lpx . HB3SC?’K 4+ H*SC? 3, (168)
h=1 (s;a)2S A k=1 Np(sia) _1
S
X X ” X 1 P— : ?
dy, (s;a) —————Gpx . H3SC?’K 2+ H¥°SC? 3 (169)
h=1 (s;a)2s A er Nn(sa)_ 1

We postpone the proofs of§8) and (L69) to AppendixD.3.5and AppendidxD.3.6 respectively.

Putting the bounds together. Substitute {64) and (L67) back into (61) to yield

Xi 1 "t XX pP— e
1+ JZ. U H4sc? 3hm%x d,"(s) V7(s) ViK(s) + H2SC?K 3+ H3°sC? 2°
h=1 k=1 s2S

+ PHISCK 5+ HésC? 4

o<

o<

X X p
H4SC? 3 max d,"(s) V7(s) ViK(s) + HB3SC’K 5+ H*sC?
h2 k=1 s2S
D.3.3. RROOF OF INEQUALITY (540

Invoking inequality (02) directly leads to
r oo

X L 2H p_, 2H p_
1+ 5 48 HC’?K log=— +28c,H3C? S2 . HB3C?’Klog=— + H*C? S?2
h=1
as claimed.

D.3.4. lROOF OF INEQUALITY (163
We shall control the term inl@3) in a way similar to the proof of Lemm&.2 in AppendixC.2

Step 1: decomposing the terms of interest. Akin to AppendixC.2, let us introduce the terms of interest and de nitions
as follows:

)6 X N,;és;a) K n 2
? - n n —k
Ap = dy (s;a) r';lh(s'a)Prlf Vitr  Vha
k=1 (s;a)2S A n=1
{z }
=Ank
. 1 X ? K —k 2 )
Bk = 1+ H Ohe1 (S) Vhe1 (S) Vi (8)

s2S
Nk%k.ak)
2 (k- Ak n §&n an
Yoy = d,’ (s ay) N,'j(sﬁ;aﬁ)Pk” VK" an 2
hk = =7k ok n h h+1 h+l
dy(spian)
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1 dr(sk:al) o o0 ok 2
Zpk = 1+ = —hhrh/pk oy Vv : (170)
H dh(SE,aﬁ) h h+1 h+1
With these de nitions in place, we directly adapt the argumen®B) {o arrive at
X

X X
An Bhk + (Zhk  Bhk)+ (Ank  Yhk): (171)
k=1 k=1 k=1

P P
As a consequence, it remains to ControL1 (Zhk Bhk)and l'f:1 (Ank  Yhk ) separately.

P P
Step 2: controlling kK=l (Ank  Yhk). Tocontrol L(:l (Ank  Yhk),we resortto Lemma&.6 by setting

NMS;a) N k( ) K"
k Ca s;a K" VA
Wp,q (s;9) = n" Vet Viha
n=1

2
; Cq =1; (172)

which satis es
Wiy (s;8) ,  4HZ=:Cy:

Applying LemmaB.6 with (172) yields that: with probability at leadt

X X
(Ahk  Yhk) = X hik
k=1 k=1
v
u X 2H 2H
t 8c3cC”’ dy’(s;@)Phsa Wk, (s;8) ? log=— +2C4C’Cy log —
k=1 (s;a)2S A
\lﬂ 2 32
u N Ls:a)
2H X X '56 . . —en 2 2H
e C?log — d,’ (s;@)Phsa 4 Ni(sia) VK Vi, 5+ C?HZlog S (173)
k=1 (s;a)2S A n=1
To further control the rst term in173), it follows from Jensen's inequality that
Zi‘dk 32 a
h Kk n __kn 2 h K n __kn 4
Ph:s:a 4 r’:lh th+1 Vi 5 Phis:a r';lh th+1 Vi (174)
n=1 n=1
which yields
2 . 3,
X X Nj(sia) NE(si) . 2
dy’ (s; @Phisa 4 n" Ve Via 5
k=1 (s;a)2s A n=1
)6 X %rl‘{ N K K __kn 4
dy’ (s; @)Phsa n" Vi Vi
k=1 (s;a)2S A n=1
r—
1 XX o E 2H 2H
1+ o Ay (5) VK. (S) Vi, (s) +32 HBC?K log =t +32H4C? log = (175)

k=1 s2S

This can be veri ed similar to the proof for Lemn#a2 in AppendixC.2 We omit the details for conciseness. To continue,
it follows that

X X ) . — 4
Ohs1 (S) Vi1 (S) Ve (S)
k=1 s2S
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@ X Xm X

? omit), 4
dhe1 (8) Vi1 (8) Vet '(9)
m=1 t=1 s2S
oM Km X 4
! ? 1)_11
e Ghy () Wy (8) VD D-10(s)
m=1 t=1 s2S
(iii) ? m ? (m 1)_1;1) 4
dp4q () 2" Vi (8) Via (s)
s2S m=1
X M2 4
? 1) 11
=4 dhy (9) 2" 2 Vi7a(s) WD P-T(s)
s2S m 2= 1
m 2 ? 1;1) 4 ? K 2 m 2 ? (m 1;1)
=4 2 Vh'+1 (S) Vh +1 (S) +4 dh+1 (S) 2 Vh.+1 (S) V
m 2= 1 s2S m 2=1

4
h+1 (S) :
Here, (i) holds by using the pessimistic proparty V¥

V¥ forallk 2 [K](see(47)) and by regrouping the summands;
(ii) follows from the fact (see updating rules in li3d and line35) that for any(m;s;h) 2 [M] S [H +1],
Vit (g)= vim D-EN(g) t=112 L (176)
and (iii) results from the choice of the paramdigr = 2™ . In addition, we can further control
X X

2 K —k 4 (IV
Opi1 (8) Vhe1 (S) Vi (8)

) X
8H* +4

2 W 2 Km . 4
dhes (5) Vi (e vit(s)
k=1 s2S s2S

m=1 t=1
(v

) X K 2Km (i),
8H"+4  dy,y (9) WVi:1(S)  Viuy °(9)
s2S m=1 t=1
) G X
8H*+4  dy,y ()

V2 () Via(s) (177)
s2S k=1
X . 0X
BH*+4H3  di () WWa(s) ViKi(9)
s2S k=1
(vi)

H3K + H8sC?:
Here, (iv) follows from the fac® V7, (s)

(178)
vi(s) H 0=H;(v)holdssince?, VI = ymtm)
Vh(Tl;” forallt 2 [L ] (using the monotonic increasing property\f.;1 introduced in(46)); and (vi) follows from(154).
Putting (L78) and (L75) together with 173), we arrive at
v
X

r

u
2H
(Ah;k Yh;k) . F C?|ng H3K + H8SC? +
k=1

2H 2H 2
H8C?K log =~ + H4C?log— + C?H?log —
H3C7K + H4' 5C7 2

(179)
. Pk o ) P
Step 3: controlling  _; (Znx Bnk). Similarly, we also invoke LemmB.6to control ,_;, (Znk Bnx). Let's
set

2 1
; Cq = 1+ﬁ 2;

—k
Wi (8:8) = Vit Vi
which satis es

(180)

Wi, (s;8) ,  4HZ=:Cy:



Pessimistic Q-Learning for Of ine Reinforcement Learning: Towards Optimal Sample Complexity

Applying LemmaB.6 with (180) yields that: with probability at leadt

P
(Bhk  Znk) = X hik
k=1 k=1
i P
X 2H 2H
t 8czc? d,’ (s;@)Phsa W[, (s:@) %log 21 +2C4C%Cy log =
k=1 (s;a)2S A
2H X k4 2H
. PC?Iog— d,’(S;@)Phsa VK, VE+1 + C’H2log —
k=1 (s;a)2S A
r
@) 2H 2H P——— p_—
C?log=—— (H3K + H8SC? )+ C’H?log=—— . HS3C’K + H* sC’? (181)

where (i) follows from (77) and (L78).

Step 4: combining the results. Inserting (81 and (L79 back into (L71), we can conclude that

XX X ” NMS;a) Nk(S'a) n n —k" 2 X
dy (s;a) nTUUPE Vi Ve = Ay
k=1 h=1 (s;a)2S A n=1 h=1
XX XX XX
Bhk + (Znx  Bnx)+ (Ank  Yhk)
h=1 k=1 h=1 k=1 h=1 k=1
XX 1 2 K —k 2 XX XX
I+ Ohe1 (S) Vi1 (S)  Vipu(s) + (Znk  Bnk) + (Ank  Yhk)
h=1 k=1 25 h=1 k=1 h=1 k=1
XX 1 X ? k VA P 52 sP s 2
H 1+ ﬁ dh+1 (S) Vh+1 (S) Vh+1 (S) + H°C’K +H SC’
h=1 k=1 25
Mn X X X ) , . P— .,
. H Oher (8) Vi1 (S) Vi (s) + K+ H> SC’

h=1 k=1 s2S

XX ? ? P
thrgfaHx] d, (s) Vi7(s) V&(s) +K + H® SC? 2

(182)
k=1 s2S

where (i) follows from the same routine to obtait¥{) and the Cauchy-Schwarz inequality.

D.3.5. lROOF OF INEQUALITY (168
Step 1: decomposing the error in(168). The term in (68) obeys

S
T e :
h (sS4 NKia a7 Lhk
h=1 (s;a)2S A k=1 Nh(s,a)_ 1 y
s — — H Pri " —nextk™ , rn
X X ? X 1 P n—hl(s “ 2H Vh?+1 (SE+1) Vh+);. (Sﬁ+l
= dh (Sy a) N k(S. a) 1 N k(S' a) 1
h=1 (s;a)2S A k=1 h 'V — nis:;a) _
s__Uu R P Nk : . —nextkn ;
0p XX X T gl A WA Wa i) Vin® (s
h=1 (s;a)2S A k=1 kdy, (s; @) kd, (s; @)
e k
. r— 2, . Nk (s;a) n —nextkn n
(fl) pHC? 2 X X 1(a= ?(5))P d, (S:8) o2 Vi (i) Vi (Sih

h=1 (s;a)2S A k=1 K kd, (s; a)
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v
U ? P NK(sa) nextkn M
u X X d(sia) o0 V2 (sf) Ve (sEh P XX X 1@= ()
h=1 (s;a)2Ss A k=1 kdy (s: ) h=1 (s;a)2S A k=1 K
v
U
u P Ngsia)
P Xt X d’(s;a) X 1 tkn , kn
HZSC? 3P M M Vh+1 (Sh+(s a)) Vﬂ‘ixl E+§Sa))
- d.(s;@)  _ ko _
h=1 (s;a)2S A =1 n=1
v
u ?
W Possgrat X X Ay (skial) o X Loz gk
d (Sk'aﬁ) h kO h+1 h+1
h=1 k=1 ~h\~h ko=k
p E X d7( )Pk
— sk ak tk
H2SC? 4 —h 2 ThTh (2L Vi) (183)

h=1 k=1 dy (sf; @)

Here, (i) follows from the facg; k(sl,a) 1 a is_a) (cf. LemmaB.2); (ii) follows from the de nition of C? in Assump-
h =) h =
tion 2.1; (iii) invokes the Cauchy-Schwarz inequality; (iv) can be obtained by regrouping the terms (the terms involving
—-next;k

(W1 Ve ) associated with indek will only been added during episodk®= k;k +1; ;K).

With this upper bound in hand, we further decompose

v
s u
XX , X 1 P X X g7k ak)pk —nextik
d, (s;d) W'—h;k . H2scC? 4%1 #a;)h(vh?u Via )
h=1 (s;a)2S A k=1 h A= — h=1 k=1 h’ “h
%
_ v -
OPimgerat & X A e o
. H2SC Pk V2L Vi
het k=1 O (Shi0)
@ p P XX X . —x
. H2sC?4 d, (s;dPhsa Vi1 Vi
h=1 k=1 (s;a)2S A
‘H’ 0 t
p X ) d.’(sk;ak =
+ ' HZsC? 4t @ dy, (S;@)Phsa WP#A Vi Via (184)
h=1 k=1 (s;a)2S A h(sh’ah)

Here (i) holds due to the following observation: denotinginyhe index of the epoch in which episokdeccurs, we have
e Y e L (185)

which invokes the monotonicity &4, in (46). In addition, (ii) arises from the Cauchy-Schwarz inequality.

Step 2: controlling the rsttermin (184). The rstterm in (184) satis es

XX X . , x XX X . _ , x
dy (si@)Phsa Vhia  Vher = dy (sia) Pr(js;a@)iViiy Vi
h=1 k=1 (s;a)2S A h=1 k=1 (s;a)2S A
o XXX ’ —x
= dh +1 (SO) Vh.+1 (SO) Vh+1 (SO)
h=1 k=1 s%2S
(ii) XX x o, ,
. HZ+ Ahsa (8) Virer (S)  Visa (8)
h=1 k=1 s2S
(iii)
HK + H8SC?; (186)

P > ?
where (i) holds due to the fact (s:2)25 A d, (s;a)Pn(js;a) = d,,, (), (i) comes from the same argument employed
to establish177), and (iii) follows from (@L54).
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Step 3: controlling the second term in(184). We shall invoke Lemm&.6 for this purpose. To proceed, let
K
Wi (5:8) = Vi Vi Co="1 (187)
which satis es
Wi, (s;a) ,  H =:Cy:

Applying LemmaB.6 with (187) yields, for allh 2 [H], with probability at leasi
0 1

X X ? d,’ (sk;ak —k X
@ dy, (s;@)Phs:a M rlm(A Vh?+1 Vit = Xhik
k=1 (s;a)2S A h=h> %h k=1
Vv
u
X X 2H 2H
t 8C3cC’ dy’(S;@)Phsa WK, (s;) ? log = +2C4C’Cy, log —
k=1 (s;@)2S A
Y
2H X X k2 2H
t C?log =— d,’(s;@)Phsa Vil Vﬁﬂ + HC?log —
k=1 (s;a)2S A
‘H’ 0 1
0 2H X X 2H
t' C?log = @H2 + dy’ (Si@)Pnsa Vi Vi *A + HC”log =~
k=1 (s;a)2S A

;
(i)
C?Iogzj(HK + H6SC? ) + HC?Iogz—H

P p_
HC?’K + H® sSC”: (188)

Here (i) follows from the same routine to arrive(a7), and (ii) comes fron{154). As a result, the second term({h84)
satis es, with probability at least

0 1
XX X , d 7 (s ak)PK x
@ dn (S;@)Phsa WA Ve Vi
h=1 k=1 (s;2)2S A h\~h'“h
0 1
XX X , 7 (k- ak)pk . p p_
@ dy (S:@)Pnsa %A V%, Vi, . HBC?K +H* SC?: (189)
h=1 k=1 (s:a)2SA n (Shs ay)

Step 4: combining the results. Finally, inserting £86) and (L89) into (184), we arrive at

S
X X g ?( )X( 1
h S,a ki_l—h;k
h=1 (s;a)2S A k=1 Ny (s; @)
P ) P 2 P ) f P 2 P< 2
H2SC? 4 HK + H6SC? + H2SC?4  HB3C?K + H4 SC?
q
P— P— pP— o U
H3SC?K 4+ H*SC? 3+ H2SC?4 HK + H4 SC? . HB3SC?’K 4+ H*SC? 3; (190)

where the last two inequalities follow from the Cauchy-Schwarz inequality.
D.3.6. FROOF OF INEQUALITY (169
Recall the expression @k in (166) as

P NK(sia) 2 P NE(sia)

GZ - n=1 Vh?+1 (SE:-l n=1 Vh?+1 (Sﬁ:-l ) 2
hik Nf(s;a)_ 1 NK(s;a) _ 1
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P NEs: " 2 P Nk n

= n:hl(sa) Prh( Vh?+l n:hl(s i Prlf Vh?+l 2, (191)

NX(s;a) _1 NX(s;a) _1 '

To continue, we make the following observation
1=2
Ghik Gﬁ;k Vamsa (Vi) + Vgrh:s;a (Vir1)

1=2 NN ERN

Gﬁ;k Varhsa (Vi) +  Vamsa (V1) (192)

due to the elementary inequah‘t)ya2 + ¥ a+ bforanya;b 0. Here, we remind the reader thédr.s.a (W, ) =
Phsa (Vi7i1)?  (Phsia Viag )2 (cf. (109). This allows us to rewrite

s
X X R X 1
dy (s;9) T Ohik
h=1 (s;a)2S A k=1 Np (s;a) _1
v s
X X ? X GR Vamsa (Vi) X X ? X Vamga (Vet)
dy (s:d) NK(s: 1 + dy (s;9) ﬁ; (193)
h=1 (s;a)2S A k=1 h (s;a) _ h=1 (s;a)2S A k=1 h (s;a) _
leaving us with two terms to cope with.
Step 1: controlling the rstterm of (193. By de nition, we have
P K(sia) mK" 2 PN K(sia) mkn
LA A LA A
2 ? _ n=1 h h+1 n=1 h Vh+1 ? N2 2 2
Gh;k Varsa (Vhe1) = N#(s; a 1 N'!'((s; a 1 Phsa (Vhs1)“+ Phsa Vi
P nE(sa) i 2 P ni(sa) pir
nglsa Prlm( Vh?+1 Phsa (V7 )2 + n21Sa Prlf Vh?+1 Prisa V7 2
NK(s;a) _ 1 @t thel NK(s;a) _1 @ Thil
P NE(sia) oo 2 P NK(sia) oo
L S n(52) pkiy 2
n=1 h h+1 ? 2 n=1 h h+1 ? .
Ph:s:a (V +2H Ph.sa V, ; 194
N,'j(s;a)_ 1 h,s,a( h+1) N,‘j(s;a)_ 1 h;s;a Vh+1 ( )
where the last inequality holds due to
P N K (s: n P N K (s: n P Nk (s: n
n:hl(sa) Prh( Vh?+1 2 P ... V? 2 _ ngl(sa) Prh( Vh?+1 P ... V? n:hl(sa) Prlf Vh?+1 + Phoo V?
Nf(s;a)_ 1 hisia Th+ Nf(s;a)_ 1 hisia Th+t Nf(s;a) _ 1 hisia Yhl
PN K(sia) K"
A A
2H n=1 h h+1 Ph;s;a Vh?+1 :

NK(s;a) _1

We now control the two terms irl@4) separately by invoking LemmnB.4. For the rsttermin (94), let us set

- . 1
Wi, = VA, 2 and ul(s;a;N) = 1= Cu (195)

which indicates that
KW/, ki  HZ=:Cy; (196)
Applying LemmaB.4 with (195 andN = N = N[X(s; a), with probability at least 5, We arrive at

1 X

X
- F:'kn Phc. V? 2 — X S,a,h,Nk
Nr'f(3§a)_ln:1( h hsa ) Vit ) | ;

i=1
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r 7E 'E S !
SAT o n C SAT
Cylog? =—— uk" (s;a;NK¥)Varsa WK, + CuCy + N u 1CW log? =——
n=1 h —
S —; E X 22 S
1 n H 1
- kWKL K+ ——— . H??Z (197)
NKk_1 _ Nk_1 NE_1 NE_1
Similarly, for the second term irL@4), with W}, = V7, , we have with probability at leadt 7
k S
1 W P Prsa Wi . H2 o - (198)
Nf(s;a)_1 " i Yhel - NK(s;a) _ 1’
Inserting (L97) and (L98) back into (L94) yields
S
1
G2, Vamsa(VW.) . H2?2 ——— . 199
h:k h,s,a( h+1) N#(S; a)_l ( )
Consequently, the rst term inl@3) can be controlled as
%
u
X X » X P Gﬁ;k Varhsa (V7 ) X X . X 1
d, (s;a) NF(sa) 1 H d, (s;a —
h=1 (s;a)2S A k=1 hi> < — h=1 (s;a)2S A k=1 Np(s;a) *_1
H2(SC?)iK 7 2; (200)
where the last inequality holds due thg).
Step 2: controlling the second term 0f{193). The second term can be decomposed as
s
X X ? X Varga (Vi)
&Y NEEa L
h=1 (s;a)2S A < k=1 h A= 5 —
0 X X X c?d,’(s;a)Varsa (V..
) h ( ) h,s,a( h+1) 1 (a: ;(S))
k
h=1 (s;a)2S A k=1
U U
Mp__pX X ] X , BX X X R
. c? dh' (s;@) Varysa (Vh'+1 ) K 1l(a= h(s))
h=1 (s;a)2S A k=1 h=1 (s;a)2SA k=1
v
___aX X ]
HSC?K 2 d, (s;@)Varmsa (V7 ); (201)
h=1 (s;a)2S A

where (i) follows from the factg = 8 by LemmaB.2 and the de nition ofC? in Assumption2.1, (i) holds
NK(sa)_1 kd, (s:a)
h A%/ '

by the Cauchy-Schwarz inequality, and the nal inequality comes from the fact thistdeterministic.

P, P )
We are then left with bounding Ezl (sayzsa O (S;@)Varsa (V1) Note that

#
XX , ) X ”
dy (s;@)Varsa (Vhee) = Esi isna Pusyi 20 Varns,: 2(sn)(Vhs1)

h=1 (s;a)2S A " h=1 4
@ E >tl . ? + V? V? 2
— LEs; shsa Pps i 7(sh) M (Sh, h(sh)) h+1 (5h+1) h (Sh)

h=1

n )(_i #2
(i) .7 . 7
= Esl S h+1 Ph;s hi ﬁ(sh) rh(sh’ f’:(sh)) + Vho‘l-l (Sh+1) Vh’)(sh)

h=1
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" ! #
% 2

2 2 ) 2
Sher Pren Zm f(sn f(sn) V(s HZ (202)
h=1

@ g

where (i) follows from Bellman's optimality equation, (ii) follows from the Markov property, (iii) holds due to the fact that
V7,1 (s)=0 foralls 2 S, and (iv) arises from the fact,(s;a) 1forall(s;a;h)2S A [H]. Substituting(202)
back into 01), we get
s
X X X Varysa (Vi)

dy (s:3) e
h=1 (s;a)2S A k=1 Np(sia) _1

P
H3SC?K 2: (203)

Step 4: combing the results. Combining 00) and @03) with (193) yields

s
X-i X ? )(( 1 2 3 19 pi
dh (S, a) ﬁGh;k . H (SC)KK B + H3SC’)K 2
h=1 (s;a)2S A k=1 n(Si8) _ o
H3SC?K 2+ H?5sC? 3: (204)
D.4. Proof of LemmaD.1
In view of (127), we can decompose the term of interest into
NMs;a)
k(s n . . A
R N RV SV}
n=1
where
%rl‘( Kk n
— Nh k" K n .
U = n" Pp Phisa Vher  Vher (205a)
n=1
ot 0 P "o Pkil
h n .
N i=N(m" By Tho oo
U, = " BPhs, o XV 205b
2 - n % Sa mﬁpqm 1(3; a) _ 1 h+1 ( )

Next, we turn to controlling these two terms separately with the assistance of LBrdma

Step 1: controlling U;.  In the following, we invoke Lemm&.4 to controlU; in (2059. Let us set

Wi, =V, W.:; and ul(s;a;N)= “g(s;a) 0;
which indicates that
KW/, ki K Vi, ki +kVi ki 2H =:Cy;
and
2H
Nihisia 2 ngr[n[i); H]S A ”'l”(s:a) N_1 G (206)

Here, the last inequality follows since (according to LenBnhand the de nition in £5))

N 2H
Np(sa) N 1
N =0; if N| (s;a) > N:

if0 Nj(s;a) N;
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To continue, it can be seen frorAg) that
X ki (s:a) X N
0 u," % (s;a;N) = a1 (207)
n=1 n=1

holds for all(N;s;a) 2 [K] S A . Therefore, choosinhl = NX(s;a) = NX for any(s; a) and applying Lemm&.4
with the above quantities, we arrive at

. L o e . X )
jUij = n" Pp Phsa Vaer Vaer = Xi s;a;h;Np
n=1 i=1
v I
' ﬁ X "¢ ' SAT
SAT n n
Cylog? = uk" (s;a;Nf)Varnsa W), + CuCy + N ”1CW log? =——
n=1 _
v
S U K
H 2 P R N o o H2 2
NE 1 . n"Vahsa Vha Visr w (208)
s r
H?2 advk™K +1 . advk MK +1 . 2 H7=42 H? 2 . 209
er]( 1 h (S! a) h (Sy a) + (erf 1)3:4 + NI.I1( l ( )

with probability at leasf. . Here, the proof of the inequalif209) is postponed to AppendiR.4.1in order to streamline
the presentation of the analysis.

Step 2: boundingU,. Making use of the result inl( 1), we arrive at

P N pK P N next;k'
i=N{m" B4 Th e i=N{™" t 4

P Vi
e Ysia) 1 ht = NePom” Y(sia) 1

To continue, for anys;a) 2 S A , we rewrite and rearrandé, (cf. (2058) as follows:

0 Py 1

. P
U, = Ny Byp =N e T ek
2 = n h;s;a epom " h+1
pom" 1.
- AN (s;a)_1

0

—nextk'

kl
N K __kn Ph Vh+l
= n" %Ph'sa Vh+1 1
™~ epom .
n=1 Ibhp (S, a) _ 1

OPN(mn.l) PNémn;l)

k

o) Rn N E\ N(mn LD 44 Phsia an i:NISm" Ly ,q ' h
n h+1 .

et ePem” Lsia) 1 fecPem” Lsia) 1

(m";1)
P )
i=N{mT B4

k K N
h N h
% n h X —-nextk'

I
= fpepom® T o 1 Phsa Pn Vi
h (S’ a)_ i:Né"‘n LY g

0 i
k (m"+2 1) k
%h Ny X "Np N K

(i) n" i hextk!
- Eﬂ, lbﬁpo;m n 1(8; a) ~ 1& I:)h;s;a Ph Vh+1

1

n= N(m'+1 1) +1

o

k N(m +2 l)"Nk N;
n

@m

i —nextk'
WS Ph;s:a I:’h \% h+1
=N (mi+1;1) 1 h
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where (i) follows from the fact tha (™" ) Nr(]mn B0 = gerom” 1(s:q), and (i) is obtained by rearranging terms
with respect ta (the terms with respect ﬁﬂeff;kl will only be added during the epoeh’ + 1), and the last equality holds
sincem" 1=mforalln= Némi”;l) +1; Némi”;l) +2;N™ 2D,

With the above relation in mind, we are ready to invoke LenBr&to controlU,. To continue, for any episodge Kk, let us
denote bym(j ) the index of the epoch in which episodéappens (with slight abuse of notation). Let us set

—next;j j N’sm“))zz oo N

i (arn- — n
Wh+1 = Vp and  uy(s;a;N) = eom . 1
=N D g h (sia) _

As a result, we see that

—-hext;j

KW/, ki k Vi ki H=:Cy
and the following fact (which will be established in Appendix4.2)

N;"“(J))Z? ?1)/\N
0 u(s;aN)=

n= N (™0 g

N 64e?
MﬁPO;m (j)(s;a) 1 N 1

' Cy (210)

holds for all(j; h;s;a) 2 [K] [H] S A  with probability at leasi

Given thatN = NX(s;a) = N, applying LemmaB.4 with the above quantities, we can show that for any state-action pair
(s;@d2S A,

O v 1
(m +2 l)ANk X(
_— i —nextk'
1Ugj = % Mepom' X Phsa  Pn Vﬂixl = X S;a;h;erf
i=1 n= N(m'+1 1)+1 h j=1
e | S
Culog? =~ ufn (s a;N)Varea WS+ c,c, + S ”1CW log? =——
i=1 —
v
s U
3 F 1 %k var Vnextk' + H 3
NK_1 Nf_1,_ onee the NK_ 1
s r ~
3 Nk Nk H 3
refk ™ h +1 ref:k" h +1 2
’ s;a ' s;a) ft ————: 211
Nk_1 " (s:8) h (s:a) (NK_ 1)%= (211)

To streamline the presentation of the analysis, we shall postpone the pr@afibf¢ AppendixD.4.3

Step 3: summing up. Combining the bounds ir2Q9 and @11) yields that: for any state-action pds;a) 2S A

N,%s;a)

K N n . . . .
AR KT U+ Uy
n=1
S r
H 2 LNK
Nk 1 r?dV,th'*'l (S,a) advk h+1 (S,a) 2
s " T ¢
3 Nk Nk H7=4 2 H22
ref;k " h +1 /. refkh +1 /. 2
NK 1 b (s;@) h (s;a) +cb(N# 1)3:4+ch# 1
th +1 H7:4 2 H2?2
s;a) + + 212
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. . kN o
holds for some suf ciently large constagf > 0, where the last line follows from the de nition d&, " (s;a)inline 14

of Algorithm 3. As a consequence of the inequaliglp), for any(s;a) 2S A , one has

H7=4 2 H22 N
+
(NF_ 1) - ®NF_1

n LT )

K Bn  (sat o

n=1

where the last inequality holds due tt20). We have thus concluded the proof of Lemba4.

D.4.1. RROOF OF INEQUALITY (209

To establish the inequality9), it is suf cient to consider the difference

Xﬁ K k k
. N n K" dvikNh+1 . dvikNh+1 . .
W, = n"Vamsa (Vv Vi) 20 " s+ (R T (s

n=1

P
Before continuing, it is easily veri ed that Il = N[(s;a) = 0, the basic fact E:“kl r'?'hk =0 leads tow; = 0, and
therefore (209 holds directly. The remainder of the proof is thus dedicated to contrdlingvhenN = Nf(s;a) 1.

Recalling the de nition in {09
P vz S K" gkt 2 P L
Vamsa (Vher  Vhe1) = Phsa (Mhsr Viper) Phsa (Vher Vi)
we can take this result together withl@) to yield

X W

- Nf ko gk 2 Nj ko gk 2
Wl = n " I:)h;s;a (Vh+1 Vh+1 ) n " F)h;s;a (Vh+1 Vh+1 )
n=1 n=1
%}5 K n 2 %}5 n
NE ok (k" K NA Bk (k" K 2
+ n"Pn (Vnsr Via) n"Pn (Vhss Vhe)
n=1 n=1
N
NK Bk P v SR
n" (Ph Ph;s;a )(Vh+1 Vh+1 )
| = {z }
=wi
g . :
NK k" k" gk N i v :
+ n"Pn (Vhsr Vi) n" Phsa(Mhsr  Vhe)
n=1 n=1
| {z }
= W2

It then boils down to control the above two terms 214) separately wheh ¥ = Nf(s;a) 1.
Step 1: controlling W{. To controlW{, we shall invoke Lemma&.4 by setting
Wiy =My Via)d  and  uh(siaN) = Ni(sa) O
which obey
KW, ki Kk Vi, K2 + KV, k2 2H2=:Cy:

Invoking the facts in206) and 07), we arrive at

2H

' Cy

(213)

(214)
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and

X ki (s;a)
0 u" T (s;asN) L 8(Nss;a) 2 [K] S A

n=1

Therefore, choosinly = Nt‘f(s; a) = N,f for any(s; a) and applying Lemma&.4 with the above quantities, we arrive at,
with probability at leasl.

k

L R NA (k" o gk o X k
Wi = n"(Ph Phsa)(Vhsr  Vhe)® = Xi s;a;h; Ny
n=1 i=1
U I
P " e . ,SAT
SAT n n
n=1 —
%
s __ U K s _
H X H3 2 HS H3 2
K ot MKW G e 2t (215)
Np_ 1 el Ne_1 Ne_1 NS _ 1
Step 2: controlling W2. Observe that Jensen's inequality gives
%# K n _xn 2 Xﬁ k n k" 2
n" Phsa (Vars Vet ) R Pusa (Vi1 Viha) (216)
n=1 n=1
PNk Nk . L .
duetothefact .2 n" =1 (see@6)and @5). Plugging the above relation int@14) gives
%# k 2 %# 2
N n n —kn N k n —k"
Wl2 n' Prlf (th+1 Vi ) n" Phsa (th+1 Vi )
n=1 n=1
%rl]( N K K" K" —Kk" %# N K KN K" —k"
= n" (Pn Phsa)(Vhsr  Vhat) n"(Pn * Phsa)(Vher Vi) (217)
n=1 n=1

Note that the rstterm in217) is exactlyjU;j de ned in (2053, which can be controlled by invokin@08) to achieve that,
with probability at least.

ok

k n n —k"
AP (PE Prsa)(VET Vi)

n=1 Vv
S u Kk S
Ho O HR _-— H2?2 H3 2 H?2
2 "Varhe, VK.V + ) + 2: 218
NE_1o s Ther o Thel T ONET NE_1 Nf_1 (218)

where the nal inequality holds sincéar,.sa V//; Vﬁnﬂ . H? and the fact ir(26). In addition, the second term in
(217) can be controlled straightforwardly by

Xrl: N Kk n n K" %rl‘( N k K"
n" PR+ Phsa Vi Vi n" Py 1t Phsa 4 Vit Via . 2H;
n=1 n=1
. n —k" n
where we have used the fact26j, Vi; Vi, , Hand PX = Ppsa , =1.
Taking the above two facts collectively witB17) yields
s
F{S 2 F{S 2

W2 . (219)

+ ;
NK_1 NK_1
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Step 3: summing up. Plugging the results ir2(L5 and 19 back into @14), we have
S

H>5 2 H32
+ ;
NE_1 Nf_1

W, Wi+ w2,

which leads to the desired resu0@) directly.

D.4.2. RROOF OF INEQUALITY (210

To begin with, let us recall two pieces of notation that shall be used throughout this proof:

1. m(j): the index of the epoch in which theth episode occurs.

2. PO™ (s; a): the value of@™" " *V) (s; @), representing the number of visits( a) in the entirem-th epoch with
lengthL,, =2™.

Applying (56) and taking the union bound ovémn(j); h;s;a) 2 [M] [H] S A yield

2n()d, (s;a)

SAT

Nyepo;m(i)s;a 1
h (sia)_ 8log =2

(220)

with probability at least. =~ =2.

For any epocim, if we denote bykast (M) the index of the last episode in the-th epoch, we can immediately see that
xn X
Kiast (M) = Li = 20 =2m+ o pm+l. (221)
i=1 i=1

Applying (56) again and taking the union bound oven(j);h;s;a) 2 [M] [H] S A , one can guarantee that for
everyn 2 [N M\ (MI*2:D1 with probability at least =2,

(m(j)+1;1) (M(j)+2 ;1) — nyKiast (M(j)+1)
N n N = N
om (i )42 e2mir2 d (s;a) if Zm(f 72.d, (s;a) log SAT (222)
h 2€?log SAT if 2m()*2 d (s;a) 2log SAT
Combine the above results to yield
S (0] (it)
mG) (. VoW (sia) " . i om( :
gm)rfpom] (s;9) _1 8log(gL) 32e2 Iogl(SL)n' if 27002 d, (s;a) log SAL
(i) (223)

2 0™ () (s;0) 1 L if 27002 d, (s;a) 2log SAT

2e? log (A1) n

where (i) follows from 220), (ii) and (iii) hold due to £22). As a result, we arrive at

(m(j)s2 1) (m (1 )2 1)
N O AN N O

N 32¢?log SAT

n
l@epo;m(j) . n
(m()* 5D (s;a) _1 _n (Mm@
(ma + h n=N{m0U +1

sz

n=N

X 32¢%log AL N 64e?log SAT
n N 1 '

n=N (MO g

P N
where the last inequality holds sinceiN:l -+ ﬁ (see Lemmd3.1).
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D.4.3. FROOF OF INEQUALITY (211])

In this subsection, we intend to control the following term

K
1 Xo —next;k" refkNE +1 refkN K +1
h—

n=1

forall (s;a) 2S A . First, itis easily seen thatl X = 0, then we havaV, = 0 and thug211) is satis ed. Therefore,
the remainder of the proof is devoted to verifyifj. 1) whenNﬁ = N,‘j(s; a) 1. Combining the expressiqil13) with
the following de nition

—nextk" —next:k" 2 —next:k" 2
Varh:sa Vha = Phsa Vi Phisia Ve ;
we arrive at
k
1 R —nextk" 2 —nextk" 2
W, = NK 1 Phsa Vh+ Phisia Ve
h — n=1
3 0 K 1 2
L e vt L et
Nk 1 Nk 1
h —~n=1 h —~n=1
Rt 0 N L2 R
1 KN —nextk" 2 1 n —nextk" 1 —nextk" 2
= NE 1 Phsa  Ph Vi + @Nk 1 Pe Vi A NK 1 Phisia Viher
h —~n=1 h n=1 h—~n=1
Z
| {2~ o {z }
=Wy = w2

In the sequel, we intend to control the terms224) separately.

Step 1: controllingW3. The rsttermW, can be controlled by invoking Lemni4 and set

—-next;i 2 1

W, = Vig and ul(s;a;N) = N = Cu
To proceeding, with the fact
. . G2
Wh1 1 VE?(lt’I 1 H?=:Cy

andN = Nf(s;a) = N[, applying LemméB.4 with the above quantities, we have for all state-action (mia) 2S A

k
1 %h n . qgn 2 )«
Wy = NK Phsa Pr Vgi?k = Xi s;a;h;Nf
h n=1 i=1
¥ I
L ST N "G ,SAT
Culog? =~ uE“ (52) (s: a; N)Varhsa W,fil(s’a) + Cu,Cy+ WUCW log? =——
S —q n=t s
2 _— H 2 2 H4 2 H 2 2
NEWhaK e e e (225)

Step 2: controlling W2. Towards controllingV2 in (224), we observe that by Jensen's inequality,

k k

1 %h —nextk" 2 1 Xh —next;k" 2_
W I:)h;s;a h+1 W Ph;s;a h+1
h h

n=1 n=1
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Equipped with this relation)V? satis es

0 1, O 1,
1 X " n —nextk" 1 X " —-nextk"
W22 @W P Vh+1 A @ﬁ Phsavh+1 A
h n=1 h n=1
K K
1 R n tk" 1 Xo n tk"
= NK P Ph:s:a Vﬂixl NK Prlf + Phsa Vﬂixl : (226)

h n=1 h n=1

As for the rstterm in £26), let us set

. - 1
Wl,, = Vﬂixlt', and  uy(s;a;N) = N = Cu;
which satisfy
Wri1+1 1 Vﬂixlt;i 1 H =:Cy:

For any(s; a), LemmaB.4 together with the above quantities aNd= NX = NX(s; a) gives

1 %ﬁ K next;k "
NK Pn Phsa Vi
h n=1
r \d r !
NMsa) _
SAT n C SAT
ol 2 SATY ufh ) (s:a;N)Varea W+ CuCy, U, log? 2
s ¢ n=t s
2 K (sia) 2 H H2 2 H
NE o W NE NE - NK
h h

with probability at leasi. . In addition, the second term can be bounded straightforwardly by

k k

1 %h n tk" 1 %h n tk"

P+ Phga Vg — P+ Phsa ; Via o, 2H:

Nh n=1 Nh n=1
where the last inequality is valid smcévﬂixltk 1 H and Pf']‘n 1= Pnsa ; =1. Substitution of the above two
observations back int@g6) yields S

H4 2
W2 . ) 24 2: (227)
NS _1 Nf_ 1

Step 3: combining the above results. Plugging the results i2R5 and @27) into (224), we reach
s

4 2
W, W3+ WZ. HY ., _H” »

thus establishing the desired inequali®i ().



